Juan M. Bardallo, Miguel A. De Vega, F. A. Márquez, A. Peregrín
{"title":"语言模糊系统中粒度和规则库学习的并行进化多目标方法","authors":"Juan M. Bardallo, Miguel A. De Vega, F. A. Márquez, A. Peregrín","doi":"10.1109/FUZZY.2009.5277343","DOIUrl":null,"url":null,"abstract":"In this paper we present a parallel evolutionary multi-objective methodology for granularity and rule-based learning for Mamdani Fuzzy Systems. The proposed methodology produces a set of solutions with different trade-off between accuracy and interpretability, based on searching the number of labels and the fuzzy rules, and also makes a variable selection. This process is achieved by exploiting present parallel computer systems allowing it to deal with more complex models.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parallel evolutionary multiobjective methodology for granularity and rule base learning in linguistic fuzzy systems\",\"authors\":\"Juan M. Bardallo, Miguel A. De Vega, F. A. Márquez, A. Peregrín\",\"doi\":\"10.1109/FUZZY.2009.5277343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a parallel evolutionary multi-objective methodology for granularity and rule-based learning for Mamdani Fuzzy Systems. The proposed methodology produces a set of solutions with different trade-off between accuracy and interpretability, based on searching the number of labels and the fuzzy rules, and also makes a variable selection. This process is achieved by exploiting present parallel computer systems allowing it to deal with more complex models.\",\"PeriodicalId\":117895,\"journal\":{\"name\":\"2009 IEEE International Conference on Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2009.5277343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallel evolutionary multiobjective methodology for granularity and rule base learning in linguistic fuzzy systems
In this paper we present a parallel evolutionary multi-objective methodology for granularity and rule-based learning for Mamdani Fuzzy Systems. The proposed methodology produces a set of solutions with different trade-off between accuracy and interpretability, based on searching the number of labels and the fuzzy rules, and also makes a variable selection. This process is achieved by exploiting present parallel computer systems allowing it to deal with more complex models.