直通式本森锅炉数据驱动故障诊断

Mehdi Saman Azari, Francesco Flammini, M. Caporuscio, S. Santini
{"title":"直通式本森锅炉数据驱动故障诊断","authors":"Mehdi Saman Azari, Francesco Flammini, M. Caporuscio, S. Santini","doi":"10.1109/ICSRS48664.2019.8987699","DOIUrl":null,"url":null,"abstract":"Fault diagnosis (FD) of once-through Benson boilers, as a crucial equipment of many thermal power plants, is of paramount importance to guarantee continuous performance. In this study, a new fault diagnosis methodology based on data-driven methods is presented to diagnose faults in once-through Benson boilers. The present study tackles this issue by adopting a combination of data-driven methods to improve the robustness of FD blocks. For this purpose, one-class versions of minimum spanning tree and K-means algorithms are employed to handle the strong interaction between measurements and part load operation and also to reduce computation time and system training error. Furthermore, an adaptive neuro-fuzzy inference system algorithm is adopted to improve accuracy and robustness of the proposed fault diagnosing system by fusion of the output of minimum spanning tree (MST) and K-means algorithms. Performance of the presented scheme against six major faults is then assessed by analyzing several test scenario.","PeriodicalId":430931,"journal":{"name":"2019 4th International Conference on System Reliability and Safety (ICSRS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data-Driven Fault Diagnosis of Once-through Benson Boilers\",\"authors\":\"Mehdi Saman Azari, Francesco Flammini, M. Caporuscio, S. Santini\",\"doi\":\"10.1109/ICSRS48664.2019.8987699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault diagnosis (FD) of once-through Benson boilers, as a crucial equipment of many thermal power plants, is of paramount importance to guarantee continuous performance. In this study, a new fault diagnosis methodology based on data-driven methods is presented to diagnose faults in once-through Benson boilers. The present study tackles this issue by adopting a combination of data-driven methods to improve the robustness of FD blocks. For this purpose, one-class versions of minimum spanning tree and K-means algorithms are employed to handle the strong interaction between measurements and part load operation and also to reduce computation time and system training error. Furthermore, an adaptive neuro-fuzzy inference system algorithm is adopted to improve accuracy and robustness of the proposed fault diagnosing system by fusion of the output of minimum spanning tree (MST) and K-means algorithms. Performance of the presented scheme against six major faults is then assessed by analyzing several test scenario.\",\"PeriodicalId\":430931,\"journal\":{\"name\":\"2019 4th International Conference on System Reliability and Safety (ICSRS)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 4th International Conference on System Reliability and Safety (ICSRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSRS48664.2019.8987699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on System Reliability and Safety (ICSRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSRS48664.2019.8987699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

直通式本森锅炉作为众多火电厂的关键设备,其故障诊断对保证锅炉的连续运行至关重要。本文提出了一种基于数据驱动的故障诊断方法,用于直通式本森锅炉的故障诊断。本研究通过采用数据驱动方法的组合来解决这个问题,以提高FD块的鲁棒性。为此,采用一类最小生成树算法和K-means算法来处理测量值与部分负载操作之间的强交互作用,同时减少计算时间和系统训练误差。此外,采用自适应神经模糊推理系统算法,通过融合最小生成树(MST)和K-means算法的输出,提高故障诊断系统的准确性和鲁棒性。通过分析几种测试场景,评估了该方案在6种主要故障下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Driven Fault Diagnosis of Once-through Benson Boilers
Fault diagnosis (FD) of once-through Benson boilers, as a crucial equipment of many thermal power plants, is of paramount importance to guarantee continuous performance. In this study, a new fault diagnosis methodology based on data-driven methods is presented to diagnose faults in once-through Benson boilers. The present study tackles this issue by adopting a combination of data-driven methods to improve the robustness of FD blocks. For this purpose, one-class versions of minimum spanning tree and K-means algorithms are employed to handle the strong interaction between measurements and part load operation and also to reduce computation time and system training error. Furthermore, an adaptive neuro-fuzzy inference system algorithm is adopted to improve accuracy and robustness of the proposed fault diagnosing system by fusion of the output of minimum spanning tree (MST) and K-means algorithms. Performance of the presented scheme against six major faults is then assessed by analyzing several test scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards a Model-centric Approach for Developing Dependable Smart Grid Applications Reliability of Systems with Simultaneous and Consecutive Failures Interval Type-2 Fuzzy Reliability Modeling for Recycling Facility Condition Based Maintenance for Industrial Labeling Machine Accellerating PRISM Validation of Vehicle Platooning Through Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1