MaskFuzzer:一个基于maskgan的工业控制协议模糊测试框架

Weifeng Sun, Bowei Zhang, Jianqiao Ding, Min Tang
{"title":"MaskFuzzer:一个基于maskgan的工业控制协议模糊测试框架","authors":"Weifeng Sun, Bowei Zhang, Jianqiao Ding, Min Tang","doi":"10.1109/SmartIoT55134.2022.00018","DOIUrl":null,"url":null,"abstract":"Industrial control network security is undoubtedly important for an industrial control system. Fuzzy testing is an important method to detect network protocol program security vulnerabilities. In order to perform protocol fuzzing effectively, test data must be generated under the guidance of protocol forma, and the protocol needs to be analyzed before the fuzzy test to generate high-quality fuzzy test cases. In this article, we propose a fuzzy testing framework called MaskFuzzer to solve the problems. A generation adversarial network model is used to automatically learn the data structure of system communication, to generate false messages conforming to protocol specifications. In order to prove the availability of our method, we used MaskFuzzer to test the Modbus-Tcpemulator and successfully find some vulnerabilities. In addition, compared with the GAN-based test case generation method and Peach, our method is best.","PeriodicalId":422269,"journal":{"name":"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MaskFuzzer: A MaskGAN-based Industrial Control Protocol Fuzz Testing Framework\",\"authors\":\"Weifeng Sun, Bowei Zhang, Jianqiao Ding, Min Tang\",\"doi\":\"10.1109/SmartIoT55134.2022.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial control network security is undoubtedly important for an industrial control system. Fuzzy testing is an important method to detect network protocol program security vulnerabilities. In order to perform protocol fuzzing effectively, test data must be generated under the guidance of protocol forma, and the protocol needs to be analyzed before the fuzzy test to generate high-quality fuzzy test cases. In this article, we propose a fuzzy testing framework called MaskFuzzer to solve the problems. A generation adversarial network model is used to automatically learn the data structure of system communication, to generate false messages conforming to protocol specifications. In order to prove the availability of our method, we used MaskFuzzer to test the Modbus-Tcpemulator and successfully find some vulnerabilities. In addition, compared with the GAN-based test case generation method and Peach, our method is best.\",\"PeriodicalId\":422269,\"journal\":{\"name\":\"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartIoT55134.2022.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIoT55134.2022.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

工业控制网络的安全对于一个工业控制系统来说无疑是非常重要的。模糊测试是检测网络协议程序安全漏洞的重要方法。为了有效地进行协议模糊测试,必须在协议格式的指导下生成测试数据,并且需要在模糊测试前对协议进行分析,以生成高质量的模糊测试用例。在本文中,我们提出了一个名为MaskFuzzer的模糊测试框架来解决问题。采用生成对抗网络模型自动学习系统通信数据结构,生成符合协议规范的假消息。为了证明该方法的有效性,我们使用MaskFuzzer对Modbus-Tcpemulator进行了测试,并成功发现了一些漏洞。此外,与基于gan的测试用例生成方法和Peach相比,我们的方法是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MaskFuzzer: A MaskGAN-based Industrial Control Protocol Fuzz Testing Framework
Industrial control network security is undoubtedly important for an industrial control system. Fuzzy testing is an important method to detect network protocol program security vulnerabilities. In order to perform protocol fuzzing effectively, test data must be generated under the guidance of protocol forma, and the protocol needs to be analyzed before the fuzzy test to generate high-quality fuzzy test cases. In this article, we propose a fuzzy testing framework called MaskFuzzer to solve the problems. A generation adversarial network model is used to automatically learn the data structure of system communication, to generate false messages conforming to protocol specifications. In order to prove the availability of our method, we used MaskFuzzer to test the Modbus-Tcpemulator and successfully find some vulnerabilities. In addition, compared with the GAN-based test case generation method and Peach, our method is best.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SmartCare: Detecting Heart Failure and Diabetes Using Smartwatch A Subspace Fusion of Hyper-parameter Optimization Method Based on Mean Regression A hybrid SOM and HMM classifier in a Fog Computing gateway for Ambient Assisted Living Environment The transitional phase of Boost.Asio and POCO C++ networking libraries towards IPv6 and IoT networking security Automotive Components Localization and De-globalization Purchasing Strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1