巴西某热电厂原料煤及其副产品的物理化学特性

J. C. Izidoro, C. D. S. Miranda, D. Castanho, C. Rossati, Felipe Campello, S. Guilhen, D. Fungaro, Shaobin Wang
{"title":"巴西某热电厂原料煤及其副产品的物理化学特性","authors":"J. C. Izidoro, C. D. S. Miranda, D. Castanho, C. Rossati, Felipe Campello, S. Guilhen, D. Fungaro, Shaobin Wang","doi":"10.31258/JAMT.1.1.1-14","DOIUrl":null,"url":null,"abstract":"In this study, feed coal (FC) from the Figueira Thermoelectric Power Plant (FTPP), located in the state of Paraná (PR), Brazil was characterized by X-ray fluorescence (XRF), X-ray diffractometry  (XRD), infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), particle size distribution analysis by laser diffraction, loss of ignition (LOI), total carbon content (TC), pH and conductivity. FC-derived by-products (CCBs) collected at the FTPP were: bottom ash (BA), fly ash from cyclone filter (CA) and fly ash from bag filter (FA).  In addition to the techniques used for feed coal characterization, CCBs were also characterized by total surface area (by using BET method), external surface area (by using laser diffraction), cation exchange capacity (CEC), bulk density, besides leaching and solubilization tests. FC sample contains 72.2% of volatile material, of which 55.3% is total carbon content. LOI, FTIR, TGA and TC analyzes corroborated with these results. The main crystalline phases in the FC sample were found to be quartz, kaolinite and pyrite. The elements As, Cr, Ni and Pb were encountered in the FC sample, indicating that the use of FTPP feed coal should be monitored due to the toxic potential of these elements. The three coal ashes were classified as class F according to ASTM and presented similar chemical composition, with total content of the main oxides (SiO2, Al2O3 and Fe2O3) above 72%. Ashes enrichment factor analysis (EF) showed that As, Zn and Pb concentrate mainly in fly ash from bag filter (FA), whereas the elements K and Mg presented higher enrichment in the bottom ash (BA) . All ashes presented quartz, mullite and magnetite as crystalline phases, as well as the same functional groups, related to the presence of humidity, organic matter and Si and Al compounds. XRD, XRF, TGA, FTIR, LOI and TC techniques were correlated and confirmed the obtained results. Total and external surface area values of CCBs were related to the total carbon content (TC), as well as to the results of particle size distribution and the scanning electron micrographs of the samples. On the other hand the CEC of the ashes showed relation with the particle size distribution and with the external surface area. Leaching and solubilization tests of CCBs showed that FA sample was considered hazardous and classified as class I waste, while CA and BA samples were considered non-hazardous and non-inert wastes and classified as class II-A. FA sample from Figueira power plant must be discarded only after treatment or a stringent disposal criterion must be followed to avoid contamination on site. In this work, feed coal sample was also compared to the CCBs samples generated from it. The results showed the differences between fuel and products through the different characterization techniques. In addition to contributing to the understanding of the relationship between coal and its combustion products, this work can also help to reduce the environmental impacts caused by the CCBs disposal, as well as can also be used to compare the characteristics of CCBs from FTPP with the new wastes that will be generated by the same thermal power plant that will be soon modernized.","PeriodicalId":287674,"journal":{"name":"Journal of Applied Materials and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Physical and Chemical Characteristics of Feed Coal and its by-products from a Brazilian Thermoelectric Power Plant\",\"authors\":\"J. C. Izidoro, C. D. S. Miranda, D. Castanho, C. Rossati, Felipe Campello, S. Guilhen, D. Fungaro, Shaobin Wang\",\"doi\":\"10.31258/JAMT.1.1.1-14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, feed coal (FC) from the Figueira Thermoelectric Power Plant (FTPP), located in the state of Paraná (PR), Brazil was characterized by X-ray fluorescence (XRF), X-ray diffractometry  (XRD), infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), particle size distribution analysis by laser diffraction, loss of ignition (LOI), total carbon content (TC), pH and conductivity. FC-derived by-products (CCBs) collected at the FTPP were: bottom ash (BA), fly ash from cyclone filter (CA) and fly ash from bag filter (FA).  In addition to the techniques used for feed coal characterization, CCBs were also characterized by total surface area (by using BET method), external surface area (by using laser diffraction), cation exchange capacity (CEC), bulk density, besides leaching and solubilization tests. FC sample contains 72.2% of volatile material, of which 55.3% is total carbon content. LOI, FTIR, TGA and TC analyzes corroborated with these results. The main crystalline phases in the FC sample were found to be quartz, kaolinite and pyrite. The elements As, Cr, Ni and Pb were encountered in the FC sample, indicating that the use of FTPP feed coal should be monitored due to the toxic potential of these elements. The three coal ashes were classified as class F according to ASTM and presented similar chemical composition, with total content of the main oxides (SiO2, Al2O3 and Fe2O3) above 72%. Ashes enrichment factor analysis (EF) showed that As, Zn and Pb concentrate mainly in fly ash from bag filter (FA), whereas the elements K and Mg presented higher enrichment in the bottom ash (BA) . All ashes presented quartz, mullite and magnetite as crystalline phases, as well as the same functional groups, related to the presence of humidity, organic matter and Si and Al compounds. XRD, XRF, TGA, FTIR, LOI and TC techniques were correlated and confirmed the obtained results. Total and external surface area values of CCBs were related to the total carbon content (TC), as well as to the results of particle size distribution and the scanning electron micrographs of the samples. On the other hand the CEC of the ashes showed relation with the particle size distribution and with the external surface area. Leaching and solubilization tests of CCBs showed that FA sample was considered hazardous and classified as class I waste, while CA and BA samples were considered non-hazardous and non-inert wastes and classified as class II-A. FA sample from Figueira power plant must be discarded only after treatment or a stringent disposal criterion must be followed to avoid contamination on site. In this work, feed coal sample was also compared to the CCBs samples generated from it. The results showed the differences between fuel and products through the different characterization techniques. In addition to contributing to the understanding of the relationship between coal and its combustion products, this work can also help to reduce the environmental impacts caused by the CCBs disposal, as well as can also be used to compare the characteristics of CCBs from FTPP with the new wastes that will be generated by the same thermal power plant that will be soon modernized.\",\"PeriodicalId\":287674,\"journal\":{\"name\":\"Journal of Applied Materials and Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Materials and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31258/JAMT.1.1.1-14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Materials and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31258/JAMT.1.1.1-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究采用x射线荧光(XRF)、x射线衍射(XRD)、红外光谱(FTIR)、热重分析(TGA)、扫描电子显微镜(SEM)、激光衍射粒度分布分析、燃失量(LOI)、总碳含量(TC)、pH值和电导率等方法对巴西帕拉南州Figueira热电发电厂(FTPP)的进料煤(FC)进行了表征。在FTPP收集的fc衍生副产物(CCBs)有:底灰(BA)、旋风除尘器飞灰(CA)和袋式除尘器飞灰(FA)。除了用于原料煤表征的技术外,CCBs还通过总表面积(通过BET法)、外表面积(通过激光衍射法)、阳离子交换容量(CEC)、堆积密度以及浸出和增溶试验进行了表征。FC样品挥发性物质含量为72.2%,其中总碳含量为55.3%。LOI, FTIR, TGA和TC分析证实了这些结果。FC样品的主要晶相为石英、高岭石和黄铁矿。在FC样品中检测到As、Cr、Ni和Pb等元素,表明FTPP给煤的使用存在潜在的毒性,因此应进行监测。三种煤灰的化学成分相似,均为ASTM F级,主要氧化物(SiO2、Al2O3和Fe2O3)的总含量均在72%以上。粉煤灰富集因子分析(EF)表明,As、Zn、Pb主要富集于袋式除尘器飞灰(FA)中,而K、Mg元素在底灰(BA)中富集较多。所有灰烬均呈现石英、莫来石和磁铁矿的结晶相,以及相同的官能团,这与湿度、有机物和硅、铝化合物的存在有关。XRD、XRF、TGA、FTIR、LOI和TC等技术进行了对比分析,证实了所得结果。CCBs的总表面积和外表面积值与总碳含量(TC)有关,也与样品的粒度分布和扫描电镜结果有关。另一方面,灰的CEC与粒径分布和外表面积有关。对CCBs的浸出和增溶试验表明,FA样品属于危险废物,属于I类废物;CA和BA样品属于非危险和非惰性废物,属于II-A类废物。来自Figueira电厂的FA样品必须在处理后丢弃,或者必须遵循严格的处置标准,以避免现场污染。在这项工作中,还将饲料煤样品与由此产生的CCBs样品进行了比较。结果表明,通过不同的表征技术,燃料和产品之间存在差异。除了有助于了解煤及其燃烧产物之间的关系外,这项工作还可以帮助减少排放CCBs对环境的影响,也可以用来比较FTPP的CCBs与即将现代化的同一火力发电厂将产生的新废物的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physical and Chemical Characteristics of Feed Coal and its by-products from a Brazilian Thermoelectric Power Plant
In this study, feed coal (FC) from the Figueira Thermoelectric Power Plant (FTPP), located in the state of Paraná (PR), Brazil was characterized by X-ray fluorescence (XRF), X-ray diffractometry  (XRD), infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), particle size distribution analysis by laser diffraction, loss of ignition (LOI), total carbon content (TC), pH and conductivity. FC-derived by-products (CCBs) collected at the FTPP were: bottom ash (BA), fly ash from cyclone filter (CA) and fly ash from bag filter (FA).  In addition to the techniques used for feed coal characterization, CCBs were also characterized by total surface area (by using BET method), external surface area (by using laser diffraction), cation exchange capacity (CEC), bulk density, besides leaching and solubilization tests. FC sample contains 72.2% of volatile material, of which 55.3% is total carbon content. LOI, FTIR, TGA and TC analyzes corroborated with these results. The main crystalline phases in the FC sample were found to be quartz, kaolinite and pyrite. The elements As, Cr, Ni and Pb were encountered in the FC sample, indicating that the use of FTPP feed coal should be monitored due to the toxic potential of these elements. The three coal ashes were classified as class F according to ASTM and presented similar chemical composition, with total content of the main oxides (SiO2, Al2O3 and Fe2O3) above 72%. Ashes enrichment factor analysis (EF) showed that As, Zn and Pb concentrate mainly in fly ash from bag filter (FA), whereas the elements K and Mg presented higher enrichment in the bottom ash (BA) . All ashes presented quartz, mullite and magnetite as crystalline phases, as well as the same functional groups, related to the presence of humidity, organic matter and Si and Al compounds. XRD, XRF, TGA, FTIR, LOI and TC techniques were correlated and confirmed the obtained results. Total and external surface area values of CCBs were related to the total carbon content (TC), as well as to the results of particle size distribution and the scanning electron micrographs of the samples. On the other hand the CEC of the ashes showed relation with the particle size distribution and with the external surface area. Leaching and solubilization tests of CCBs showed that FA sample was considered hazardous and classified as class I waste, while CA and BA samples were considered non-hazardous and non-inert wastes and classified as class II-A. FA sample from Figueira power plant must be discarded only after treatment or a stringent disposal criterion must be followed to avoid contamination on site. In this work, feed coal sample was also compared to the CCBs samples generated from it. The results showed the differences between fuel and products through the different characterization techniques. In addition to contributing to the understanding of the relationship between coal and its combustion products, this work can also help to reduce the environmental impacts caused by the CCBs disposal, as well as can also be used to compare the characteristics of CCBs from FTPP with the new wastes that will be generated by the same thermal power plant that will be soon modernized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hydrocarbon-Impacted Soils Supported Mn for Organic Pollutant Oxidation Hydrocarbon-Impacted Soils Supported Mn for Organic Pollutant Oxidation Computational Fluid Dynamics Modeling of Fermentation Reactions in Bioethanol Fermentor: A Review Various Methods of Strengthening Reinforced Concrete Beam-Column Joint Subjected Earthquake-Type Loading Using Fibre-Reinforced Polymers: A Critical Review Energy Router Applications in the Electric Power System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1