T. Nozaki, T. Murakami, T. Shimono, K. Ohnishi, R. Oboe
{"title":"脊髓损伤患者膳食辅助装置的研制","authors":"T. Nozaki, T. Murakami, T. Shimono, K. Ohnishi, R. Oboe","doi":"10.1109/AMC.2016.7496381","DOIUrl":null,"url":null,"abstract":"The objective of this research is to develop a meal assistance device for patients, who lost the ability to move their own body except for the head and the neck due to disease, accidents, congenital factors, and aging. Main problems of existing conventional devices are “cost”, “size”, “complexity”, “appearance”, and “feeling of alive”. This paper tackles the above problems and explains structure of the developed device for meal assistance. The newly developed meal assistance device was made by 3D printers for cheap price and customizable. The developed assistance device has two degrees of freedom; translational motion for stab and rotational motion for bringing. In addition, the developed meal assistance device adopted a strategy of polar coordinate-based manual operation, which allows users to operate intuitively. The appearance of the developed device is not heavy compared with the conventional devices shaped like industrial robotic manipulators. Above mentioned features are important and gives competitive power especially in the medical care field requiring adaptation to individual demand. The developed meal assistance device succeeded to serve a meal toward the user's mouth in an experimental verification of a practical use.","PeriodicalId":273847,"journal":{"name":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","volume":"389 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Development of meal assistance device for patients with spinal cord injury\",\"authors\":\"T. Nozaki, T. Murakami, T. Shimono, K. Ohnishi, R. Oboe\",\"doi\":\"10.1109/AMC.2016.7496381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this research is to develop a meal assistance device for patients, who lost the ability to move their own body except for the head and the neck due to disease, accidents, congenital factors, and aging. Main problems of existing conventional devices are “cost”, “size”, “complexity”, “appearance”, and “feeling of alive”. This paper tackles the above problems and explains structure of the developed device for meal assistance. The newly developed meal assistance device was made by 3D printers for cheap price and customizable. The developed assistance device has two degrees of freedom; translational motion for stab and rotational motion for bringing. In addition, the developed meal assistance device adopted a strategy of polar coordinate-based manual operation, which allows users to operate intuitively. The appearance of the developed device is not heavy compared with the conventional devices shaped like industrial robotic manipulators. Above mentioned features are important and gives competitive power especially in the medical care field requiring adaptation to individual demand. The developed meal assistance device succeeded to serve a meal toward the user's mouth in an experimental verification of a practical use.\",\"PeriodicalId\":273847,\"journal\":{\"name\":\"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)\",\"volume\":\"389 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMC.2016.7496381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2016.7496381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of meal assistance device for patients with spinal cord injury
The objective of this research is to develop a meal assistance device for patients, who lost the ability to move their own body except for the head and the neck due to disease, accidents, congenital factors, and aging. Main problems of existing conventional devices are “cost”, “size”, “complexity”, “appearance”, and “feeling of alive”. This paper tackles the above problems and explains structure of the developed device for meal assistance. The newly developed meal assistance device was made by 3D printers for cheap price and customizable. The developed assistance device has two degrees of freedom; translational motion for stab and rotational motion for bringing. In addition, the developed meal assistance device adopted a strategy of polar coordinate-based manual operation, which allows users to operate intuitively. The appearance of the developed device is not heavy compared with the conventional devices shaped like industrial robotic manipulators. Above mentioned features are important and gives competitive power especially in the medical care field requiring adaptation to individual demand. The developed meal assistance device succeeded to serve a meal toward the user's mouth in an experimental verification of a practical use.