AutoKG -用于软件测试的汽车领域知识图谱:意见书

Vaibhav Kesri, Anmol Nayak, Karthikeyan Ponnalagu
{"title":"AutoKG -用于软件测试的汽车领域知识图谱:意见书","authors":"Vaibhav Kesri, Anmol Nayak, Karthikeyan Ponnalagu","doi":"10.1109/ICSTW52544.2021.00047","DOIUrl":null,"url":null,"abstract":"Industries have a significant amount of data in semi-structured and unstructured formats which are typically captured in text documents, spreadsheets, images, etc. This is especially the case with the software description documents used by domain experts in the automotive domain to perform tasks at various phases of the Software Development Life Cycle (SDLC). In this paper, we propose an end-to-end pipeline to extract an Automotive Knowledge Graph (AutoKG) from textual data using Natural Language Processing (NLP) techniques with the application of automatic test case generation. The proposed pipeline primarily consists of the following components: 1) AutoOntology, an ontology that has been derived by analyzing several industry scale automotive domain software systems, 2) AutoRE, a Relation Extraction (RE) model to extract triplets from various sentence types typically found in the automotive domain, and 3) AutoVec, a neural embedding based algorithm for triplet matching and context-based search. We demonstrate the pipeline with an application of automatic test case generation from requirements using AutoKG.","PeriodicalId":371680,"journal":{"name":"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"AutoKG - An Automotive Domain Knowledge Graph for Software Testing: A position paper\",\"authors\":\"Vaibhav Kesri, Anmol Nayak, Karthikeyan Ponnalagu\",\"doi\":\"10.1109/ICSTW52544.2021.00047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industries have a significant amount of data in semi-structured and unstructured formats which are typically captured in text documents, spreadsheets, images, etc. This is especially the case with the software description documents used by domain experts in the automotive domain to perform tasks at various phases of the Software Development Life Cycle (SDLC). In this paper, we propose an end-to-end pipeline to extract an Automotive Knowledge Graph (AutoKG) from textual data using Natural Language Processing (NLP) techniques with the application of automatic test case generation. The proposed pipeline primarily consists of the following components: 1) AutoOntology, an ontology that has been derived by analyzing several industry scale automotive domain software systems, 2) AutoRE, a Relation Extraction (RE) model to extract triplets from various sentence types typically found in the automotive domain, and 3) AutoVec, a neural embedding based algorithm for triplet matching and context-based search. We demonstrate the pipeline with an application of automatic test case generation from requirements using AutoKG.\",\"PeriodicalId\":371680,\"journal\":{\"name\":\"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTW52544.2021.00047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTW52544.2021.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

行业中有大量半结构化和非结构化格式的数据,这些数据通常以文本文档、电子表格、图像等形式捕获。汽车领域的领域专家在软件开发生命周期(SDLC)的各个阶段执行任务时使用的软件描述文档尤其如此。在本文中,我们提出了一个端到端的管道,使用自然语言处理(NLP)技术和自动测试用例生成技术从文本数据中提取汽车知识图(AutoKG)。提出的管道主要由以下组件组成:1)AutoOntology,一个通过分析几个行业规模的汽车领域软件系统而衍生的本体;2)autoore,一种关系提取(RE)模型,用于从汽车领域中常见的各种句子类型中提取三联体;3)AutoVec,一种基于神经嵌入的三联体匹配和基于上下文的搜索算法。我们用AutoKG从需求中自动生成测试用例的应用程序来演示管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AutoKG - An Automotive Domain Knowledge Graph for Software Testing: A position paper
Industries have a significant amount of data in semi-structured and unstructured formats which are typically captured in text documents, spreadsheets, images, etc. This is especially the case with the software description documents used by domain experts in the automotive domain to perform tasks at various phases of the Software Development Life Cycle (SDLC). In this paper, we propose an end-to-end pipeline to extract an Automotive Knowledge Graph (AutoKG) from textual data using Natural Language Processing (NLP) techniques with the application of automatic test case generation. The proposed pipeline primarily consists of the following components: 1) AutoOntology, an ontology that has been derived by analyzing several industry scale automotive domain software systems, 2) AutoRE, a Relation Extraction (RE) model to extract triplets from various sentence types typically found in the automotive domain, and 3) AutoVec, a neural embedding based algorithm for triplet matching and context-based search. We demonstrate the pipeline with an application of automatic test case generation from requirements using AutoKG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effectively Sampling Higher Order Mutants Using Causal Effect Syntax-Tree Similarity for Test-Case Derivability in Software Requirements Automatic Equivalent Mutants Classification Using Abstract Syntax Tree Neural Networks Online GANs for Automatic Performance Testing A Combinatorial Approach to Explaining Image Classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1