{"title":"用被动非线性吸振器抑制谐波强迫振荡器的振动","authors":"B. Yu","doi":"10.1115/detc2020-22715","DOIUrl":null,"url":null,"abstract":"\n In this paper, the performance of a nonlinear vibration absorber with different nonlinearity is studied. The analytical solutions of periodic motions are obtained using the general harmonic balance method. As the nonlinear strength is weak, the effectiveness of the absorber is discussed. For strong nonlinearities, unstable parodic motions can be obtained and stabilities of the periodic motions are determined through the eigenvalue analysis. The Hopf and saddle bifurcations are observed. Numerical simulations are illustrated for both masses at the resonance peaks. The harmonic amplitude spectrums show the harmonic effects on periodic motions, and the corresponding accuracy of approximate analytical solutions.","PeriodicalId":236538,"journal":{"name":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibration Suppression of a Harmonically Forced Oscillator Using a Passive Nonlinear Vibration Absorber\",\"authors\":\"B. Yu\",\"doi\":\"10.1115/detc2020-22715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, the performance of a nonlinear vibration absorber with different nonlinearity is studied. The analytical solutions of periodic motions are obtained using the general harmonic balance method. As the nonlinear strength is weak, the effectiveness of the absorber is discussed. For strong nonlinearities, unstable parodic motions can be obtained and stabilities of the periodic motions are determined through the eigenvalue analysis. The Hopf and saddle bifurcations are observed. Numerical simulations are illustrated for both masses at the resonance peaks. The harmonic amplitude spectrums show the harmonic effects on periodic motions, and the corresponding accuracy of approximate analytical solutions.\",\"PeriodicalId\":236538,\"journal\":{\"name\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vibration Suppression of a Harmonically Forced Oscillator Using a Passive Nonlinear Vibration Absorber
In this paper, the performance of a nonlinear vibration absorber with different nonlinearity is studied. The analytical solutions of periodic motions are obtained using the general harmonic balance method. As the nonlinear strength is weak, the effectiveness of the absorber is discussed. For strong nonlinearities, unstable parodic motions can be obtained and stabilities of the periodic motions are determined through the eigenvalue analysis. The Hopf and saddle bifurcations are observed. Numerical simulations are illustrated for both masses at the resonance peaks. The harmonic amplitude spectrums show the harmonic effects on periodic motions, and the corresponding accuracy of approximate analytical solutions.