高电容高纵横比TSV蚀刻工艺

T. Murayama, T. Sakuishi, Y. Morikawa, N. Tani, K. Saitou
{"title":"高电容高纵横比TSV蚀刻工艺","authors":"T. Murayama, T. Sakuishi, Y. Morikawa, N. Tani, K. Saitou","doi":"10.1109/ICSJ.2014.7009632","DOIUrl":null,"url":null,"abstract":"TSV (Thru Silicon Via) application for 2.5D silicon interposers and 3D stacked devices is expected to realize a next-generation semiconductor device with high packaging density, power saving, and high-speed signal transmission, etc. Recently, discussions on long-term reliability of TSV has been triggered, the establishment of TSV integration technologies contribute to reliability is strongly requested to enable TSV packaging promote mass production. We have developed Si etching technology for high aspect ratio (>20) ultra low leak high-capacitor by using TSV production technology. As anisotropic deep silicon etching method, cycle etching and non-cycle etching method have been offered. Cycle etching is a general anisotropic Si etching method by cyclic etching of deposit (fluorocarbon polymer) and etching. In cycle etching, sidewall is protected by fluorocarbon polymer, periodic roughness appears on etched sidewall called “scallops”. On the other hand, non-cycle etching is without using fluorocarbon. In non-cycle etching, sidewall is protected by thin SiOX, non-cyclic etching process achieves smooth etched “scallops-free” sidewall. It is considered that the quality of etched sidewall influences capacitor reliability in process integration, it is necessary to investigate sidewall condition about both cycle etching and non-cycle/scallops-free etching because of differences of each etching process property; process gas, sidewall protection mechanism, scallops/scallopsfree, and so on. Therefore we conducted XPS analysis etched trench sidewall; depth of 10 um, 25 um, 40 um. It is showed that in cycle etching there are more residual F and C on etched sidewall due to fluorocarbon polymer than non-cycle without using fluorocarbon. It is considered that more residual F and C on etched sidewall might influence capacitor and TSV reliability.","PeriodicalId":362502,"journal":{"name":"IEEE CPMT Symposium Japan 2014","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High aspect ratio TSV etching process for high-capacitor\",\"authors\":\"T. Murayama, T. Sakuishi, Y. Morikawa, N. Tani, K. Saitou\",\"doi\":\"10.1109/ICSJ.2014.7009632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TSV (Thru Silicon Via) application for 2.5D silicon interposers and 3D stacked devices is expected to realize a next-generation semiconductor device with high packaging density, power saving, and high-speed signal transmission, etc. Recently, discussions on long-term reliability of TSV has been triggered, the establishment of TSV integration technologies contribute to reliability is strongly requested to enable TSV packaging promote mass production. We have developed Si etching technology for high aspect ratio (>20) ultra low leak high-capacitor by using TSV production technology. As anisotropic deep silicon etching method, cycle etching and non-cycle etching method have been offered. Cycle etching is a general anisotropic Si etching method by cyclic etching of deposit (fluorocarbon polymer) and etching. In cycle etching, sidewall is protected by fluorocarbon polymer, periodic roughness appears on etched sidewall called “scallops”. On the other hand, non-cycle etching is without using fluorocarbon. In non-cycle etching, sidewall is protected by thin SiOX, non-cyclic etching process achieves smooth etched “scallops-free” sidewall. It is considered that the quality of etched sidewall influences capacitor reliability in process integration, it is necessary to investigate sidewall condition about both cycle etching and non-cycle/scallops-free etching because of differences of each etching process property; process gas, sidewall protection mechanism, scallops/scallopsfree, and so on. Therefore we conducted XPS analysis etched trench sidewall; depth of 10 um, 25 um, 40 um. It is showed that in cycle etching there are more residual F and C on etched sidewall due to fluorocarbon polymer than non-cycle without using fluorocarbon. It is considered that more residual F and C on etched sidewall might influence capacitor and TSV reliability.\",\"PeriodicalId\":362502,\"journal\":{\"name\":\"IEEE CPMT Symposium Japan 2014\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE CPMT Symposium Japan 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSJ.2014.7009632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE CPMT Symposium Japan 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSJ.2014.7009632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

TSV (Thru Silicon Via)应用于2.5D硅中间层和3D堆叠器件,有望实现具有高封装密度、低功耗、高速信号传输等特点的下一代半导体器件。近年来,关于TSV长期可靠性的讨论已经引发,迫切需要建立有助于TSV可靠性的集成技术,以使TSV封装实现量产。采用TSV生产技术,开发了高纵横比(>20)超低漏高电容的硅蚀刻技术。作为各向异性的深硅刻蚀方法,有循环刻蚀法和非循环刻蚀法。循环蚀刻是一种通用的各向异性硅的蚀刻方法,由沉积层(氟碳聚合物)的循环蚀刻和蚀刻组成。在循环蚀刻中,侧壁被氟碳聚合物保护,被蚀刻的侧壁出现周期性的粗糙,称为“扇贝”。另一方面,非循环蚀刻是不使用氟碳的。在非循环蚀刻中,侧壁被薄SiOX保护,非循环蚀刻工艺实现了光滑蚀刻的“无扇贝”侧壁。考虑到在工艺集成中,蚀刻边壁的质量影响电容器的可靠性,由于每种蚀刻工艺特性的差异,有必要对周期蚀刻和非周期/无扇贝蚀刻的边壁条件进行研究;工艺气体、侧壁保护机构、扇贝/无扇贝等。因此,我们对蚀刻沟侧壁进行了XPS分析;深度为10微米,25微米,40微米。结果表明,在循环蚀刻过程中,由于氟碳聚合物的存在,蚀刻侧壁上残留的氟和碳比不循环不使用氟碳的要多。认为蚀刻侧壁上残留较多的F和C会影响电容器和TSV的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High aspect ratio TSV etching process for high-capacitor
TSV (Thru Silicon Via) application for 2.5D silicon interposers and 3D stacked devices is expected to realize a next-generation semiconductor device with high packaging density, power saving, and high-speed signal transmission, etc. Recently, discussions on long-term reliability of TSV has been triggered, the establishment of TSV integration technologies contribute to reliability is strongly requested to enable TSV packaging promote mass production. We have developed Si etching technology for high aspect ratio (>20) ultra low leak high-capacitor by using TSV production technology. As anisotropic deep silicon etching method, cycle etching and non-cycle etching method have been offered. Cycle etching is a general anisotropic Si etching method by cyclic etching of deposit (fluorocarbon polymer) and etching. In cycle etching, sidewall is protected by fluorocarbon polymer, periodic roughness appears on etched sidewall called “scallops”. On the other hand, non-cycle etching is without using fluorocarbon. In non-cycle etching, sidewall is protected by thin SiOX, non-cyclic etching process achieves smooth etched “scallops-free” sidewall. It is considered that the quality of etched sidewall influences capacitor reliability in process integration, it is necessary to investigate sidewall condition about both cycle etching and non-cycle/scallops-free etching because of differences of each etching process property; process gas, sidewall protection mechanism, scallops/scallopsfree, and so on. Therefore we conducted XPS analysis etched trench sidewall; depth of 10 um, 25 um, 40 um. It is showed that in cycle etching there are more residual F and C on etched sidewall due to fluorocarbon polymer than non-cycle without using fluorocarbon. It is considered that more residual F and C on etched sidewall might influence capacitor and TSV reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low power penalty, dry-film polymer waveguides for silicon photonics chip packaging Miniaturized LTE modem SiP using novel multiple compartments shielding Evaluation of thermal interface material with electric capacitance measurement: A new method using metal meshes to present finer surface roughness levels High speed LCP board for 28Gbps transmission through 300mm Visualization of tissue collagen with femtosecond laser: application to skin diagnosis and cell culture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1