Reiner Jung, R. Heinrich, Eric Schmieders, M. Strittmatter, W. Hasselbring
{"title":"面向方面的元模型演化方法","authors":"Reiner Jung, R. Heinrich, Eric Schmieders, M. Strittmatter, W. Hasselbring","doi":"10.1145/2631675.2631681","DOIUrl":null,"url":null,"abstract":"Long-living systems face many modifications and extensions over time due to changing technology and requirements. This causes changes in the models reflecting the systems, and subsequently in the underlying meta-models, as their structure and semantics are adapted to adhere these changes. Modifying meta-models requires adaptations in all tools realizing their semantics. This is a costly endeavor, especially for complex meta-models.\n To solve this problem we propose a method to construct and refactor meta-models to be concise and focused on a small set of concerns. The method results in simpler metamodel modification scenarios and fewer modifications, as new concerns and aspects are encapsulated in separate meta-models. Furthermore, we define design patterns based on the different roles meta-models play in software. Thus, we keep large and complex modeling projects manageable due to the improved adaptability of their meta-model basis.","PeriodicalId":302777,"journal":{"name":"VAO '14","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A Method for Aspect-oriented Meta-Model Evolution\",\"authors\":\"Reiner Jung, R. Heinrich, Eric Schmieders, M. Strittmatter, W. Hasselbring\",\"doi\":\"10.1145/2631675.2631681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long-living systems face many modifications and extensions over time due to changing technology and requirements. This causes changes in the models reflecting the systems, and subsequently in the underlying meta-models, as their structure and semantics are adapted to adhere these changes. Modifying meta-models requires adaptations in all tools realizing their semantics. This is a costly endeavor, especially for complex meta-models.\\n To solve this problem we propose a method to construct and refactor meta-models to be concise and focused on a small set of concerns. The method results in simpler metamodel modification scenarios and fewer modifications, as new concerns and aspects are encapsulated in separate meta-models. Furthermore, we define design patterns based on the different roles meta-models play in software. Thus, we keep large and complex modeling projects manageable due to the improved adaptability of their meta-model basis.\",\"PeriodicalId\":302777,\"journal\":{\"name\":\"VAO '14\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VAO '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2631675.2631681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VAO '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2631675.2631681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Long-living systems face many modifications and extensions over time due to changing technology and requirements. This causes changes in the models reflecting the systems, and subsequently in the underlying meta-models, as their structure and semantics are adapted to adhere these changes. Modifying meta-models requires adaptations in all tools realizing their semantics. This is a costly endeavor, especially for complex meta-models.
To solve this problem we propose a method to construct and refactor meta-models to be concise and focused on a small set of concerns. The method results in simpler metamodel modification scenarios and fewer modifications, as new concerns and aspects are encapsulated in separate meta-models. Furthermore, we define design patterns based on the different roles meta-models play in software. Thus, we keep large and complex modeling projects manageable due to the improved adaptability of their meta-model basis.