股票市场预测:文本挖掘在越南的应用

Le Thi Hong Hanh, Nguyen Ngoc Nam, N. T. Linh, Nguyen Linh Diep, Nguyen Ngoc Hai
{"title":"股票市场预测:文本挖掘在越南的应用","authors":"Le Thi Hong Hanh, Nguyen Ngoc Nam, N. T. Linh, Nguyen Linh Diep, Nguyen Ngoc Hai","doi":"10.25073/2588-1108/vnueab.4715","DOIUrl":null,"url":null,"abstract":"There are very few studies in Vietnam on the application of text mining in finance and Vietnamese language processing. The origin of this study comes from one of the leading studies on the use of machine learning to analyze text data from 4 well-known online newspapers in Vietnam to forecast the increase, decrease and neutrality of the VN-Index one day in advance. This study used nearly 70,000 articles from four reputable and reliable online newspapers in Vietnam as input data for machine learning models. These were: decision trees, random forests, KNNs and SVMs. After selecting the best model (SVM) and the best dataset (Vietstock), the techniques used to dig deep and refine the findings raised the accuracy to 60.1%. The end result is solid evidence that news about the financial and stock situation in the popular press affects the price movements of the VN-INDEX and the Vietnamese stock market.","PeriodicalId":270329,"journal":{"name":"VNU JOURNAL OF ECONOMICS AND BUSINESS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stock Market Prediction: The Application of Text-Mining in Vietnam\",\"authors\":\"Le Thi Hong Hanh, Nguyen Ngoc Nam, N. T. Linh, Nguyen Linh Diep, Nguyen Ngoc Hai\",\"doi\":\"10.25073/2588-1108/vnueab.4715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are very few studies in Vietnam on the application of text mining in finance and Vietnamese language processing. The origin of this study comes from one of the leading studies on the use of machine learning to analyze text data from 4 well-known online newspapers in Vietnam to forecast the increase, decrease and neutrality of the VN-Index one day in advance. This study used nearly 70,000 articles from four reputable and reliable online newspapers in Vietnam as input data for machine learning models. These were: decision trees, random forests, KNNs and SVMs. After selecting the best model (SVM) and the best dataset (Vietstock), the techniques used to dig deep and refine the findings raised the accuracy to 60.1%. The end result is solid evidence that news about the financial and stock situation in the popular press affects the price movements of the VN-INDEX and the Vietnamese stock market.\",\"PeriodicalId\":270329,\"journal\":{\"name\":\"VNU JOURNAL OF ECONOMICS AND BUSINESS\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VNU JOURNAL OF ECONOMICS AND BUSINESS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25073/2588-1108/vnueab.4715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU JOURNAL OF ECONOMICS AND BUSINESS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1108/vnueab.4715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在越南,关于文本挖掘在金融和越南语语言处理中的应用的研究很少。本研究的起源来自一项领先的研究,该研究使用机器学习分析越南4家知名在线报纸的文本数据,提前一天预测VN-Index的增减和中性。这项研究使用了越南四家信誉良好、可靠的在线报纸的近7万篇文章作为机器学习模型的输入数据。它们是:决策树、随机森林、knn和支持向量机。在选择最佳模型(SVM)和最佳数据集(Vietstock)后,用于深入挖掘和改进发现的技术将准确率提高到60.1%。最终的结果是确凿的证据,关于金融和股票形势的新闻在大众媒体影响的价格走势vn指数和越南股票市场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stock Market Prediction: The Application of Text-Mining in Vietnam
There are very few studies in Vietnam on the application of text mining in finance and Vietnamese language processing. The origin of this study comes from one of the leading studies on the use of machine learning to analyze text data from 4 well-known online newspapers in Vietnam to forecast the increase, decrease and neutrality of the VN-Index one day in advance. This study used nearly 70,000 articles from four reputable and reliable online newspapers in Vietnam as input data for machine learning models. These were: decision trees, random forests, KNNs and SVMs. After selecting the best model (SVM) and the best dataset (Vietstock), the techniques used to dig deep and refine the findings raised the accuracy to 60.1%. The end result is solid evidence that news about the financial and stock situation in the popular press affects the price movements of the VN-INDEX and the Vietnamese stock market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thực trạng và giải pháp phát triển nguyên liệu thức ăn chăn nuôi ở Việt Nam giai đoạn hậu COVID-19 Các nhân tố tác động đến ý định chuyển đổi từ ô tô truyền thống sang ô tô điện của người tiêu dùng tại thị trường Việt Nam Vai trò FDI với tăng trưởng kinh tế: Nghiên cứu điển hình tại khu vực Đông Nam Bộ Đánh giá hiểu biết của sinh viên Hà Nội về chuẩn mực kế toán công quốc tế Ảnh hưởng của các yếu tố marketing MIX tới quyết định mua thịt lạnh của người tiêu dùng tại Hà Nội
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1