一种基于混合先验的通用稀疏图像反卷积算法

S. Xiao
{"title":"一种基于混合先验的通用稀疏图像反卷积算法","authors":"S. Xiao","doi":"10.1109/WCSP.2010.5633525","DOIUrl":null,"url":null,"abstract":"Compared with traditional sparse representation methods, overcomplete sparse representation is more suitable for image deconvolution. However, there have been few image deconvolution algorithms using overcomplete sparse representation. Further, among existing algorithms, a specific sparse image deconvolution algorithm corresponding to a certain sparse representation method is commonly used, which usually does not suit other methods. Therefore, in this paper, we develop a general sparse image deconvolution algorithm that can incorporate various sparse representation methods into image deconvolution depending on the applications. We propose the Bayesian framework for the presented algorithm, in which the original image is firstly modeled using a hybrid model. The statistical characteristics of the model parameters are then described using Gamma distribution. Based on the prior distributions of the original image and model parameters, we use evidence analysis method to estimate the optimal original image. The experimental results demonstrate the efficiency and competitive performance of the proposed algorithm compared with state-of-the-art algorithms.","PeriodicalId":448094,"journal":{"name":"2010 International Conference on Wireless Communications & Signal Processing (WCSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid prior based general sparse image deconvolution algorithm\",\"authors\":\"S. Xiao\",\"doi\":\"10.1109/WCSP.2010.5633525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared with traditional sparse representation methods, overcomplete sparse representation is more suitable for image deconvolution. However, there have been few image deconvolution algorithms using overcomplete sparse representation. Further, among existing algorithms, a specific sparse image deconvolution algorithm corresponding to a certain sparse representation method is commonly used, which usually does not suit other methods. Therefore, in this paper, we develop a general sparse image deconvolution algorithm that can incorporate various sparse representation methods into image deconvolution depending on the applications. We propose the Bayesian framework for the presented algorithm, in which the original image is firstly modeled using a hybrid model. The statistical characteristics of the model parameters are then described using Gamma distribution. Based on the prior distributions of the original image and model parameters, we use evidence analysis method to estimate the optimal original image. The experimental results demonstrate the efficiency and competitive performance of the proposed algorithm compared with state-of-the-art algorithms.\",\"PeriodicalId\":448094,\"journal\":{\"name\":\"2010 International Conference on Wireless Communications & Signal Processing (WCSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Wireless Communications & Signal Processing (WCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2010.5633525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Wireless Communications & Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2010.5633525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与传统的稀疏表示方法相比,过完全稀疏表示更适合于图像反卷积。然而,使用过完全稀疏表示的图像反卷积算法很少。此外,在现有的算法中,通常使用特定的稀疏图像反卷积算法,对应于某种稀疏表示方法,通常不适合其他方法。因此,在本文中,我们开发了一种通用的稀疏图像反卷积算法,该算法可以根据不同的应用将各种稀疏表示方法结合到图像反卷积中。我们提出了贝叶斯框架的算法,其中原始图像首先使用混合模型建模。然后用伽玛分布描述模型参数的统计特征。基于原始图像和模型参数的先验分布,采用证据分析法估计最优原始图像。实验结果表明,与现有算法相比,该算法具有较高的效率和竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid prior based general sparse image deconvolution algorithm
Compared with traditional sparse representation methods, overcomplete sparse representation is more suitable for image deconvolution. However, there have been few image deconvolution algorithms using overcomplete sparse representation. Further, among existing algorithms, a specific sparse image deconvolution algorithm corresponding to a certain sparse representation method is commonly used, which usually does not suit other methods. Therefore, in this paper, we develop a general sparse image deconvolution algorithm that can incorporate various sparse representation methods into image deconvolution depending on the applications. We propose the Bayesian framework for the presented algorithm, in which the original image is firstly modeled using a hybrid model. The statistical characteristics of the model parameters are then described using Gamma distribution. Based on the prior distributions of the original image and model parameters, we use evidence analysis method to estimate the optimal original image. The experimental results demonstrate the efficiency and competitive performance of the proposed algorithm compared with state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel MEO constellation for global communication without inter-satellite links Performance analysis of a selection cooperation scheme in multi-source multi-relay networks Efficient energy detector for spectrum sensing in complex Gaussian noise Compression of CQI feedback with compressive sensing in adaptive OFDM systems A BICM-MD-ID scheme in FFH system for combatting partial-band interference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1