基于深度学习的计算机断层图像腰椎转移瘤检测与分类

I. Dheivya, S. Gurunathan
{"title":"基于深度学习的计算机断层图像腰椎转移瘤检测与分类","authors":"I. Dheivya, S. Gurunathan","doi":"10.1109/IECBES54088.2022.10079431","DOIUrl":null,"url":null,"abstract":"Metastasis in the vertebral body is a widely observed malignant disease. This study used Computer Tomography (CT) images of the lumbar region to detect and classify the metastases from the normal vertebral bodies. We also classify the two types of metastases; Sclerotic and Lytic. Segmentation of the vertebral body is done using a deep neural network. We compared the performance of our model with existing state-of-art models. Multi-resolution blocks in the proposed model help segment the vertebral body with lytic lesions in the margin of the region of interest. Through Wavelet image transformation, coefficients are derived from the vertebral region. Based on the extracted wavelet scattering features, vertebral bodies are classified into three classes; normal, sclerotic and lytic, using Principal Component Analysis (PCA).","PeriodicalId":146681,"journal":{"name":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Based Lumbar Metastases Detection and Classification from Computer Tomography Images\",\"authors\":\"I. Dheivya, S. Gurunathan\",\"doi\":\"10.1109/IECBES54088.2022.10079431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metastasis in the vertebral body is a widely observed malignant disease. This study used Computer Tomography (CT) images of the lumbar region to detect and classify the metastases from the normal vertebral bodies. We also classify the two types of metastases; Sclerotic and Lytic. Segmentation of the vertebral body is done using a deep neural network. We compared the performance of our model with existing state-of-art models. Multi-resolution blocks in the proposed model help segment the vertebral body with lytic lesions in the margin of the region of interest. Through Wavelet image transformation, coefficients are derived from the vertebral region. Based on the extracted wavelet scattering features, vertebral bodies are classified into three classes; normal, sclerotic and lytic, using Principal Component Analysis (PCA).\",\"PeriodicalId\":146681,\"journal\":{\"name\":\"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECBES54088.2022.10079431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECBES54088.2022.10079431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

椎体转移是一种广泛观察到的恶性疾病。本研究使用腰椎区域的计算机断层扫描(CT)图像来检测和分类来自正常椎体的转移。我们还对两种类型的转移进行了分类;硬化性和溶解性。椎体的分割是使用深度神经网络完成的。我们将我们的模型的性能与现有的最先进的模型进行了比较。提出的模型中的多分辨率块有助于在感兴趣区域的边缘分割具有溶解性病变的椎体。通过小波图像变换,从椎体区域导出系数。根据提取的小波散射特征,将椎体分为三类;正常,硬化和溶解,使用主成分分析(PCA)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning Based Lumbar Metastases Detection and Classification from Computer Tomography Images
Metastasis in the vertebral body is a widely observed malignant disease. This study used Computer Tomography (CT) images of the lumbar region to detect and classify the metastases from the normal vertebral bodies. We also classify the two types of metastases; Sclerotic and Lytic. Segmentation of the vertebral body is done using a deep neural network. We compared the performance of our model with existing state-of-art models. Multi-resolution blocks in the proposed model help segment the vertebral body with lytic lesions in the margin of the region of interest. Through Wavelet image transformation, coefficients are derived from the vertebral region. Based on the extracted wavelet scattering features, vertebral bodies are classified into three classes; normal, sclerotic and lytic, using Principal Component Analysis (PCA).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Functional Connectivity Based Classification for Autism Spectrum Disorder Using Spearman’s Rank Correlation Vector-Quantized Zero-Delay Deep Autoencoders for the Compression of Electrical Stimulation Patterns of Cochlear Implants using STOI Depression Detection on Malay Dialects Using GPT-3 Mechanical Noise Affects Rambling and Trembling Trajectories During Quiet Standing Effect Of Shoe Cushioning Hardness to Running Biomechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1