预测COVID-19死亡人数的每周贝叶斯建模策略:巴西圣卡塔琳娜州的模型和案例研究

Pedro H. C. Avelar, L. Lamb, S. Tsoka, Jonathan Cardoso-Silva
{"title":"预测COVID-19死亡人数的每周贝叶斯建模策略:巴西圣卡塔琳娜州的模型和案例研究","authors":"Pedro H. C. Avelar, L. Lamb, S. Tsoka, Jonathan Cardoso-Silva","doi":"10.21203/RS.3.RS-444318/V1","DOIUrl":null,"url":null,"abstract":"\n Background: The novel coronavirus pandemic has affected Brazil's Santa Catarina State (SC) severely. At the time of writing (24 March 2021), over 764,000 cases and over 9,800 deaths by COVID-19 have been confirmed, hospitals were fully occupied with local news reporting at least 397 people in the waiting list for an ICU bed. Despite initial state-wide measures at the outbreak of the pandemic, the state government passed most responsibilities down to cities local government, leaving them to plan whether and when to apply Non-Pharmaceutical Interventions (NPIs). In an attempt to better inform local policy making, we applied an existing Bayesian algorithm to model the spread of the pandemic in the seven geographic macro-regions of the state. However, as we found that the model was too reactive to change in data trends, here we propose changes to extend the model and improve its forecasting capabilities. Methods: Our four proposed variations of the original method allow accessing data of daily reported infections and take into account under-reporting of cases more explicitly. Two of the proposed versions also attempt to model the delay in test reporting. We simulated weekly forecasting of deaths from the period from 31/05/2020 until 31/01/2021.First week data were used as a cold-start to the algorithm, after which weekly calibrations of the model were able to converge in fewer iterations. Google Mobility data were used as covariates to the model, as well as to estimate of the susceptible population at each simulated run. Findings: The changes made the model significantly less reactive and more rapid in adapting to scenarios after a peak in deaths is observed. Assuming that the cases are under-reported greatly benefited the model in its stability, and modelling retroactively-added data (due to the “hot” nature of the data used) had a negligible impact in performance. Interpretation: Although not as reliable as death statistics, case statistics, when modelled in conjunction with an overestimate parameter, provide a good alternative for improving the forecasting of models, especially in long-range predictions and after the peak of an infection wave.","PeriodicalId":409996,"journal":{"name":"arXiv: Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weekly Bayesian Modelling Strategy to Predict Deaths by COVID-19: a Model and Case Study for the State of Santa Catarina, Brazil\",\"authors\":\"Pedro H. C. Avelar, L. Lamb, S. Tsoka, Jonathan Cardoso-Silva\",\"doi\":\"10.21203/RS.3.RS-444318/V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Background: The novel coronavirus pandemic has affected Brazil's Santa Catarina State (SC) severely. At the time of writing (24 March 2021), over 764,000 cases and over 9,800 deaths by COVID-19 have been confirmed, hospitals were fully occupied with local news reporting at least 397 people in the waiting list for an ICU bed. Despite initial state-wide measures at the outbreak of the pandemic, the state government passed most responsibilities down to cities local government, leaving them to plan whether and when to apply Non-Pharmaceutical Interventions (NPIs). In an attempt to better inform local policy making, we applied an existing Bayesian algorithm to model the spread of the pandemic in the seven geographic macro-regions of the state. However, as we found that the model was too reactive to change in data trends, here we propose changes to extend the model and improve its forecasting capabilities. Methods: Our four proposed variations of the original method allow accessing data of daily reported infections and take into account under-reporting of cases more explicitly. Two of the proposed versions also attempt to model the delay in test reporting. We simulated weekly forecasting of deaths from the period from 31/05/2020 until 31/01/2021.First week data were used as a cold-start to the algorithm, after which weekly calibrations of the model were able to converge in fewer iterations. Google Mobility data were used as covariates to the model, as well as to estimate of the susceptible population at each simulated run. Findings: The changes made the model significantly less reactive and more rapid in adapting to scenarios after a peak in deaths is observed. Assuming that the cases are under-reported greatly benefited the model in its stability, and modelling retroactively-added data (due to the “hot” nature of the data used) had a negligible impact in performance. Interpretation: Although not as reliable as death statistics, case statistics, when modelled in conjunction with an overestimate parameter, provide a good alternative for improving the forecasting of models, especially in long-range predictions and after the peak of an infection wave.\",\"PeriodicalId\":409996,\"journal\":{\"name\":\"arXiv: Applications\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/RS.3.RS-444318/V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-444318/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

背景:新型冠状病毒大流行严重影响了巴西圣卡塔琳娜州(SC)。在撰写本文时(2021年3月24日),已确诊的COVID-19病例超过76.4万例,死亡人数超过9800人,医院被当地新闻报道占据,至少有397人在等待重症监护室床位。尽管在大流行爆发时全州范围内采取了初步措施,但州政府将大部分责任移交给了城市地方政府,由它们来规划是否以及何时实施非药物干预措施。为了更好地为当地政策制定提供信息,我们应用现有的贝叶斯算法对该州七个地理宏观区域的大流行传播进行了建模。然而,由于我们发现模型对数据趋势的变化过于反应,在这里我们提出了一些变化来扩展模型并提高其预测能力。方法:我们提出的原始方法的四个变体允许访问每日报告感染的数据,并更明确地考虑漏报病例。其中两个提议的版本也试图模拟测试报告中的延迟。我们模拟了从2020年5月31日到2021年1月31日期间的每周死亡预测。第一周的数据被用作算法的冷启动,之后每周的模型校准能够在更少的迭代中收敛。谷歌移动数据被用作模型的协变量,以及在每次模拟运行中估计易感人群。研究结果:在观察到死亡高峰后,这些变化使模型的反应性显著降低,适应情况的速度更快。假设病例报告不足大大有利于模型的稳定性,并且建模追溯添加的数据(由于所使用数据的“热”性质)对性能的影响可以忽略不计。解释:虽然不像死亡统计那样可靠,但病例统计在与高估参数一起建模时,为改进模型的预测提供了一个很好的替代方法,特别是在长期预测和感染波高峰之后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weekly Bayesian Modelling Strategy to Predict Deaths by COVID-19: a Model and Case Study for the State of Santa Catarina, Brazil
Background: The novel coronavirus pandemic has affected Brazil's Santa Catarina State (SC) severely. At the time of writing (24 March 2021), over 764,000 cases and over 9,800 deaths by COVID-19 have been confirmed, hospitals were fully occupied with local news reporting at least 397 people in the waiting list for an ICU bed. Despite initial state-wide measures at the outbreak of the pandemic, the state government passed most responsibilities down to cities local government, leaving them to plan whether and when to apply Non-Pharmaceutical Interventions (NPIs). In an attempt to better inform local policy making, we applied an existing Bayesian algorithm to model the spread of the pandemic in the seven geographic macro-regions of the state. However, as we found that the model was too reactive to change in data trends, here we propose changes to extend the model and improve its forecasting capabilities. Methods: Our four proposed variations of the original method allow accessing data of daily reported infections and take into account under-reporting of cases more explicitly. Two of the proposed versions also attempt to model the delay in test reporting. We simulated weekly forecasting of deaths from the period from 31/05/2020 until 31/01/2021.First week data were used as a cold-start to the algorithm, after which weekly calibrations of the model were able to converge in fewer iterations. Google Mobility data were used as covariates to the model, as well as to estimate of the susceptible population at each simulated run. Findings: The changes made the model significantly less reactive and more rapid in adapting to scenarios after a peak in deaths is observed. Assuming that the cases are under-reported greatly benefited the model in its stability, and modelling retroactively-added data (due to the “hot” nature of the data used) had a negligible impact in performance. Interpretation: Although not as reliable as death statistics, case statistics, when modelled in conjunction with an overestimate parameter, provide a good alternative for improving the forecasting of models, especially in long-range predictions and after the peak of an infection wave.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weekly Bayesian Modelling Strategy to Predict Deaths by COVID-19: a Model and Case Study for the State of Santa Catarina, Brazil Selecting the Most Effective Nudge: Evidence from a Large-Scale Experiment on Immunization Revealing the Transmission Dynamics of COVID-19: A Bayesian Framework for Rt Estimation Improving living biomass C-stock loss estimates by combining optical satellite, airborne laser scanning, and NFI data Bayesian classification for dating archaeological sites via projectile points.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1