放电深度如何影响锂金属聚合物电池的循环寿命

T. Guena, P. Leblanc
{"title":"放电深度如何影响锂金属聚合物电池的循环寿命","authors":"T. Guena, P. Leblanc","doi":"10.1109/INTLEC.2006.251641","DOIUrl":null,"url":null,"abstract":"Batteries used as energy storage in telecommunications applications do not usually cycle over their full rated capacity. These batteries spend most of the time floating at full charge, and during discharges, only a fraction of the battery capacity is used depending on the time of the power outage. The cycle life of a battery is often reported at 100% depth of discharge (DOD) of the capacity and it usually corresponds to a worst-case scenario. In this paper, the impact of cycling at different DODs on LMP battery cycling performances was investigated. The depth of discharge was correlated to capacity fade and coulombic efficiency. Various cycling protocols covering a range of DODs have been applied to LMP cells at 43 degC and 60 degC. Analysis of the data was made considering both depth of discharge and cumulative discharge capacity throughout the test. We will report on the beneficial effect of decreasing DOD on the cycle life performances of LMP technology, resulting in a significant cycle life improvement","PeriodicalId":356699,"journal":{"name":"INTELEC 06 - Twenty-Eighth International Telecommunications Energy Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":"{\"title\":\"How Depth of Discharge Affects the Cycle Life of Lithium-Metal-Polymer Batteries\",\"authors\":\"T. Guena, P. Leblanc\",\"doi\":\"10.1109/INTLEC.2006.251641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Batteries used as energy storage in telecommunications applications do not usually cycle over their full rated capacity. These batteries spend most of the time floating at full charge, and during discharges, only a fraction of the battery capacity is used depending on the time of the power outage. The cycle life of a battery is often reported at 100% depth of discharge (DOD) of the capacity and it usually corresponds to a worst-case scenario. In this paper, the impact of cycling at different DODs on LMP battery cycling performances was investigated. The depth of discharge was correlated to capacity fade and coulombic efficiency. Various cycling protocols covering a range of DODs have been applied to LMP cells at 43 degC and 60 degC. Analysis of the data was made considering both depth of discharge and cumulative discharge capacity throughout the test. We will report on the beneficial effect of decreasing DOD on the cycle life performances of LMP technology, resulting in a significant cycle life improvement\",\"PeriodicalId\":356699,\"journal\":{\"name\":\"INTELEC 06 - Twenty-Eighth International Telecommunications Energy Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"105\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTELEC 06 - Twenty-Eighth International Telecommunications Energy Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTLEC.2006.251641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTELEC 06 - Twenty-Eighth International Telecommunications Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTLEC.2006.251641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 105

摘要

在电信应用中用作能量存储的电池通常不会在其全部额定容量上循环。这些电池在充满电的情况下大部分时间都在浮动,在放电期间,根据停电的时间,只有一小部分电池容量被使用。电池的循环寿命通常是在容量的100%放电深度(DOD)下报告的,它通常对应于最坏的情况。本文研究了不同DODs下的循环对LMP电池循环性能的影响。放电深度与容量衰减和库仑效率有关。在43℃和60℃的LMP细胞中应用了各种循环方案,涵盖了一系列的DODs。对整个试验过程中放电深度和累计放电容量进行了分析。我们将报告降低DOD对LMP技术的循环寿命性能的有益影响,从而显著提高循环寿命
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How Depth of Discharge Affects the Cycle Life of Lithium-Metal-Polymer Batteries
Batteries used as energy storage in telecommunications applications do not usually cycle over their full rated capacity. These batteries spend most of the time floating at full charge, and during discharges, only a fraction of the battery capacity is used depending on the time of the power outage. The cycle life of a battery is often reported at 100% depth of discharge (DOD) of the capacity and it usually corresponds to a worst-case scenario. In this paper, the impact of cycling at different DODs on LMP battery cycling performances was investigated. The depth of discharge was correlated to capacity fade and coulombic efficiency. Various cycling protocols covering a range of DODs have been applied to LMP cells at 43 degC and 60 degC. Analysis of the data was made considering both depth of discharge and cumulative discharge capacity throughout the test. We will report on the beneficial effect of decreasing DOD on the cycle life performances of LMP technology, resulting in a significant cycle life improvement
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Active Clamp Converter with Full Resonant Switching Float Life Expectancy of VRLA-Batteries Based on High Temperature Float Tests Impact of Discharge Rate, Design and Test Parameter Extended Run Fuel Cell Backup Power: Solving the Hydrogen Problem Ground Fault Detection by Differential Monitoring of the Float Current Different Frequency Instabilities of Averaged Current Controlled Boost PFC AC-DC Regulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1