面向制造计划的部件自动分类:用于全局形状识别的单视图卷积神经网络

Andy Barclay, J. Corney
{"title":"面向制造计划的部件自动分类:用于全局形状识别的单视图卷积神经网络","authors":"Andy Barclay, J. Corney","doi":"10.1115/detc2020-22335","DOIUrl":null,"url":null,"abstract":"\n An experienced engineer can glance at a component and suggest appropriate methods for its manufacture. This skill has been difficult to automate but in recent years Neural Networks have demonstrated impressive image recognition capabilities in many applications. Consequently, this work is motivated by the goal of automating shape assessment for manufacturing. Specifically the reported work investigates the feasibility of training a convolutional neural network (CNN) to recognize 2D images of shapes associated with particular Near Net Shape (NNS) manufacturing processes such as casting, forging, or flow forming. The system uses multiple images generated from 3D CAD models (each manually associated with specific NNS processes) as training data and a single shop floor photograph as a classification query. While multiple views are used to train the CNN only a single view is used to assess the accuracy of the classification. Such single-view classification is designed to support the easy assessment of physical parts observed in manufacturing facilities where it would often be impractical to create an array of images from many viewpoints. The result suggests that despite limitations, single-view CNNs can classify real engineering components for manufacture.","PeriodicalId":164403,"journal":{"name":"Volume 9: 40th Computers and Information in Engineering Conference (CIE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Classification of Components for Manufacturing Planning: Single-View Convolutional Neural Network for Global Shape Identification\",\"authors\":\"Andy Barclay, J. Corney\",\"doi\":\"10.1115/detc2020-22335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n An experienced engineer can glance at a component and suggest appropriate methods for its manufacture. This skill has been difficult to automate but in recent years Neural Networks have demonstrated impressive image recognition capabilities in many applications. Consequently, this work is motivated by the goal of automating shape assessment for manufacturing. Specifically the reported work investigates the feasibility of training a convolutional neural network (CNN) to recognize 2D images of shapes associated with particular Near Net Shape (NNS) manufacturing processes such as casting, forging, or flow forming. The system uses multiple images generated from 3D CAD models (each manually associated with specific NNS processes) as training data and a single shop floor photograph as a classification query. While multiple views are used to train the CNN only a single view is used to assess the accuracy of the classification. Such single-view classification is designed to support the easy assessment of physical parts observed in manufacturing facilities where it would often be impractical to create an array of images from many viewpoints. The result suggests that despite limitations, single-view CNNs can classify real engineering components for manufacture.\",\"PeriodicalId\":164403,\"journal\":{\"name\":\"Volume 9: 40th Computers and Information in Engineering Conference (CIE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: 40th Computers and Information in Engineering Conference (CIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 40th Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个有经验的工程师可以看一眼零件,并提出适当的制造方法。这项技能很难自动化,但近年来神经网络在许多应用中展示了令人印象深刻的图像识别能力。因此,这项工作的动机是制造自动化形状评估的目标。具体来说,报告的工作研究了训练卷积神经网络(CNN)识别与特定近净形状(NNS)制造工艺(如铸造、锻造或流成型)相关的形状的2D图像的可行性。该系统使用从3D CAD模型生成的多个图像(每个图像都与特定的神经网络系统过程手动关联)作为训练数据,并使用单个车间照片作为分类查询。虽然使用多个视图来训练CNN,但仅使用单个视图来评估分类的准确性。这种单视图分类旨在支持对制造设施中观察到的物理部件进行轻松评估,在这些设施中,从多个视点创建图像阵列通常是不切实际的。结果表明,尽管存在局限性,单视图cnn仍然可以对真实的工程部件进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Classification of Components for Manufacturing Planning: Single-View Convolutional Neural Network for Global Shape Identification
An experienced engineer can glance at a component and suggest appropriate methods for its manufacture. This skill has been difficult to automate but in recent years Neural Networks have demonstrated impressive image recognition capabilities in many applications. Consequently, this work is motivated by the goal of automating shape assessment for manufacturing. Specifically the reported work investigates the feasibility of training a convolutional neural network (CNN) to recognize 2D images of shapes associated with particular Near Net Shape (NNS) manufacturing processes such as casting, forging, or flow forming. The system uses multiple images generated from 3D CAD models (each manually associated with specific NNS processes) as training data and a single shop floor photograph as a classification query. While multiple views are used to train the CNN only a single view is used to assess the accuracy of the classification. Such single-view classification is designed to support the easy assessment of physical parts observed in manufacturing facilities where it would often be impractical to create an array of images from many viewpoints. The result suggests that despite limitations, single-view CNNs can classify real engineering components for manufacture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis of Tensile Tests Performed on 316L Specimens Manufactured by Directed Energy Deposition Agent Based Resilient Transportation Infrastructure With Surrogate Adaptive Networks Medical Assessment Test of Extrapersonal Neglect Using Virtual Reality: A Preliminary Study Predictive Human-in-the-Loop Simulations for Assistive Exoskeletons Multi-Objective Implementation of Additive Manufacturing in Make-to-Stock Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1