自动选择转录培训材料

T. Kamm, Gerald G. Meyer
{"title":"自动选择转录培训材料","authors":"T. Kamm, Gerald G. Meyer","doi":"10.1109/ASRU.2001.1034673","DOIUrl":null,"url":null,"abstract":"Conventional wisdom says that incorporating more training data is the surest way to reduce the error rate of a speech recognition system. This, in turn, guarantees that speech recognition systems are expensive to train, because of the high cost of annotating training data. We propose an iterative training algorithm that seeks to improve the error rate of a speech recognizer without incurring additional transcription cost, by selecting a subset of the already available transcribed training data. We apply the proposed algorithm to an alpha-digit recognition problem and reduce the error rate from 10.3% to 9.4% on a particular test set.","PeriodicalId":118671,"journal":{"name":"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Automatic selection of transcribed training material\",\"authors\":\"T. Kamm, Gerald G. Meyer\",\"doi\":\"10.1109/ASRU.2001.1034673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional wisdom says that incorporating more training data is the surest way to reduce the error rate of a speech recognition system. This, in turn, guarantees that speech recognition systems are expensive to train, because of the high cost of annotating training data. We propose an iterative training algorithm that seeks to improve the error rate of a speech recognizer without incurring additional transcription cost, by selecting a subset of the already available transcribed training data. We apply the proposed algorithm to an alpha-digit recognition problem and reduce the error rate from 10.3% to 9.4% on a particular test set.\",\"PeriodicalId\":118671,\"journal\":{\"name\":\"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2001.1034673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2001.1034673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

传统观点认为,整合更多的训练数据是降低语音识别系统错误率的最可靠方法。这反过来又保证了语音识别系统的训练成本很高,因为对训练数据进行注释的成本很高。我们提出了一种迭代训练算法,旨在通过选择已经可用的转录训练数据的子集,在不产生额外转录成本的情况下提高语音识别器的错误率。我们将该算法应用于一个字母数字识别问题,并在特定的测试集上将错误率从10.3%降低到9.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic selection of transcribed training material
Conventional wisdom says that incorporating more training data is the surest way to reduce the error rate of a speech recognition system. This, in turn, guarantees that speech recognition systems are expensive to train, because of the high cost of annotating training data. We propose an iterative training algorithm that seeks to improve the error rate of a speech recognizer without incurring additional transcription cost, by selecting a subset of the already available transcribed training data. We apply the proposed algorithm to an alpha-digit recognition problem and reduce the error rate from 10.3% to 9.4% on a particular test set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Example-based query generation for spontaneous speech Multilingual acoustic models for the recognition of non-native speech A comparative study of model-based adaptation techniques for a compact speech recognizer Trend tying in the segmental-feature HMM Estimated rank pruning and Java-based speech recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1