BPAR:用于解耦I/O执行的基于绑定的并行聚合框架

Teng Wang, K. Vasko, Zhuo Liu, Hui Chen, Weikuan Yu
{"title":"BPAR:用于解耦I/O执行的基于绑定的并行聚合框架","authors":"Teng Wang, K. Vasko, Zhuo Liu, Hui Chen, Weikuan Yu","doi":"10.1109/DISCS.2014.6","DOIUrl":null,"url":null,"abstract":"In today's \"Big Data\" era, developers have adopted I/O techniques such as MPI-IO, Parallel NetCDF and HDF5 to garner enough performance to manage the vast amount of data that scientific applications require. These I/O techniques offer parallel access to shared datasets and together with a set of optimizations such as data sieving and two-phase I/O to boost I/O throughput. While most of these techniques focus on optimizing the access pattern on a single file or file extent, few of these techniques consider cross-file I/O optimizations. This paper aims to explore the potential benefit from cross-file I/O aggregation. We propose a Bundle-based PARallel Aggregation framework (BPAR) and design three partitioning schemes under such framework that targets at improving the I/O performance of a mission-critical application GEOS-5, as well as a broad range of other scientific applications. The results of our experiments reveal that BPAR can achieve on average 2.1× performance improvement over the baseline GEOS-5.","PeriodicalId":278119,"journal":{"name":"2014 International Workshop on Data Intensive Scalable Computing Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"BPAR: A Bundle-Based Parallel Aggregation Framework for Decoupled I/O Execution\",\"authors\":\"Teng Wang, K. Vasko, Zhuo Liu, Hui Chen, Weikuan Yu\",\"doi\":\"10.1109/DISCS.2014.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's \\\"Big Data\\\" era, developers have adopted I/O techniques such as MPI-IO, Parallel NetCDF and HDF5 to garner enough performance to manage the vast amount of data that scientific applications require. These I/O techniques offer parallel access to shared datasets and together with a set of optimizations such as data sieving and two-phase I/O to boost I/O throughput. While most of these techniques focus on optimizing the access pattern on a single file or file extent, few of these techniques consider cross-file I/O optimizations. This paper aims to explore the potential benefit from cross-file I/O aggregation. We propose a Bundle-based PARallel Aggregation framework (BPAR) and design three partitioning schemes under such framework that targets at improving the I/O performance of a mission-critical application GEOS-5, as well as a broad range of other scientific applications. The results of our experiments reveal that BPAR can achieve on average 2.1× performance improvement over the baseline GEOS-5.\",\"PeriodicalId\":278119,\"journal\":{\"name\":\"2014 International Workshop on Data Intensive Scalable Computing Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Data Intensive Scalable Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DISCS.2014.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Data Intensive Scalable Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DISCS.2014.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在当今的“大数据”时代,开发人员已经采用了MPI-IO、并行NetCDF和HDF5等I/O技术来获得足够的性能来管理科学应用所需的大量数据。这些I/O技术提供了对共享数据集的并行访问,并提供了一组优化,如数据筛选和两阶段I/O,以提高I/O吞吐量。虽然这些技术中的大多数都侧重于优化单个文件或文件范围上的访问模式,但这些技术中很少考虑跨文件I/O优化。本文旨在探讨跨文件I/O聚合的潜在好处。我们提出了一个基于bundle的并行聚合框架(BPAR),并在该框架下设计了三种分区方案,旨在提高关键任务应用GEOS-5以及其他广泛的科学应用的I/O性能。实验结果表明,与基线GEOS-5相比,BPAR可以实现平均2.1倍的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BPAR: A Bundle-Based Parallel Aggregation Framework for Decoupled I/O Execution
In today's "Big Data" era, developers have adopted I/O techniques such as MPI-IO, Parallel NetCDF and HDF5 to garner enough performance to manage the vast amount of data that scientific applications require. These I/O techniques offer parallel access to shared datasets and together with a set of optimizations such as data sieving and two-phase I/O to boost I/O throughput. While most of these techniques focus on optimizing the access pattern on a single file or file extent, few of these techniques consider cross-file I/O optimizations. This paper aims to explore the potential benefit from cross-file I/O aggregation. We propose a Bundle-based PARallel Aggregation framework (BPAR) and design three partitioning schemes under such framework that targets at improving the I/O performance of a mission-critical application GEOS-5, as well as a broad range of other scientific applications. The results of our experiments reveal that BPAR can achieve on average 2.1× performance improvement over the baseline GEOS-5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CULZSS-Bit: A Bit-Vector Algorithm for Lossless Data Compression on GPGPUs Mapping of RAID Controller Performance Data to the Job History on Large Computing Systems PSA: A Performance and Space-Aware Data Layout Scheme for Hybrid Parallel File Systems A Caching Approach to Reduce Communication in Graph Search Algorithms Distributed Multipath Routing Algorithm for Data Center Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1