二维函数数值微分的TSVD方法

Zhen-yu Zhao, C. Yue
{"title":"二维函数数值微分的TSVD方法","authors":"Zhen-yu Zhao, C. Yue","doi":"10.1109/CSO.2010.11","DOIUrl":null,"url":null,"abstract":"Numerical is a a classical ill-posed problem. In this paper, we propose a new method for numerical differentiation of bivariate functions. The truncated singular value decomposition (TSVD)regularization approach of weighted generalized solution for reasonable equations has been introduced to deal with the ill-posed ness of the problem. We show that the method can be realized by the discrete sine transform. Theoretical and numerical results show that the method is effective.","PeriodicalId":427481,"journal":{"name":"2010 Third International Joint Conference on Computational Science and Optimization","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The TSVD Method for Numerical Differentiation of 2D Functions\",\"authors\":\"Zhen-yu Zhao, C. Yue\",\"doi\":\"10.1109/CSO.2010.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical is a a classical ill-posed problem. In this paper, we propose a new method for numerical differentiation of bivariate functions. The truncated singular value decomposition (TSVD)regularization approach of weighted generalized solution for reasonable equations has been introduced to deal with the ill-posed ness of the problem. We show that the method can be realized by the discrete sine transform. Theoretical and numerical results show that the method is effective.\",\"PeriodicalId\":427481,\"journal\":{\"name\":\"2010 Third International Joint Conference on Computational Science and Optimization\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Third International Joint Conference on Computational Science and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSO.2010.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Joint Conference on Computational Science and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2010.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数值问题是一个经典的不适定问题。本文提出了二元函数数值微分的一种新方法。引入合理方程加权广义解的截断奇异值分解(TSVD)正则化方法来处理问题的病态性。我们证明了该方法可以通过离散正弦变换来实现。理论和数值结果表明,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The TSVD Method for Numerical Differentiation of 2D Functions
Numerical is a a classical ill-posed problem. In this paper, we propose a new method for numerical differentiation of bivariate functions. The truncated singular value decomposition (TSVD)regularization approach of weighted generalized solution for reasonable equations has been introduced to deal with the ill-posed ness of the problem. We show that the method can be realized by the discrete sine transform. Theoretical and numerical results show that the method is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing the Internal Fraud Risk of Chinese Commercial Banks A Fast Bidirectional Method for Mining Maximal Frequent Itemsets A Prediction of the Monthly Precipitation Model Based on PSO-ANN and its Applications On the Analysis of Performance of the Artificial Tribe Algorithm Analysis on the Volatility of SHIBOR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1