一种基于类信息的特征基因选择SNMF方法

Jin-Xing Liu, Chun-Xia Ma, Ying-Lian Gao, Jian Liu, C. Zheng
{"title":"一种基于类信息的特征基因选择SNMF方法","authors":"Jin-Xing Liu, Chun-Xia Ma, Ying-Lian Gao, Jian Liu, C. Zheng","doi":"10.1109/ISB.2014.6990423","DOIUrl":null,"url":null,"abstract":"The significant advantage of sparse methods is to reduce the complicacy of genes expression data, which makes them easier to understand and interpret. In this paper, we propose a novel Class-information-based Sparse Non-negative Matrix Factorization (CISNMF) method which introduces the class information by the total scatter matrix. Firstly, the total scatter matrix is obtained via combining the between-class and within-class scatter matrices. Secondly, a new data matrix is constructed via singular values and left singular vectors which can be obtained via decomposing the total scatter matrix. Finally, we decompose the new data matrix by using sparse Non-negative Matrix Factorization and extract characteristic genes. In the end, results on gene expression data sets show that our method can extract more characteristic genes in response to abiotic stresses than conventional gene selection methods.","PeriodicalId":249103,"journal":{"name":"2014 8th International Conference on Systems Biology (ISB)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Class-information-based SNMF method for selecting characteristic genes\",\"authors\":\"Jin-Xing Liu, Chun-Xia Ma, Ying-Lian Gao, Jian Liu, C. Zheng\",\"doi\":\"10.1109/ISB.2014.6990423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The significant advantage of sparse methods is to reduce the complicacy of genes expression data, which makes them easier to understand and interpret. In this paper, we propose a novel Class-information-based Sparse Non-negative Matrix Factorization (CISNMF) method which introduces the class information by the total scatter matrix. Firstly, the total scatter matrix is obtained via combining the between-class and within-class scatter matrices. Secondly, a new data matrix is constructed via singular values and left singular vectors which can be obtained via decomposing the total scatter matrix. Finally, we decompose the new data matrix by using sparse Non-negative Matrix Factorization and extract characteristic genes. In the end, results on gene expression data sets show that our method can extract more characteristic genes in response to abiotic stresses than conventional gene selection methods.\",\"PeriodicalId\":249103,\"journal\":{\"name\":\"2014 8th International Conference on Systems Biology (ISB)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 8th International Conference on Systems Biology (ISB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISB.2014.6990423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2014.6990423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

稀疏方法的显著优点是降低了基因表达数据的复杂性,使其更容易理解和解释。本文提出了一种新的基于类信息的稀疏非负矩阵分解(CISNMF)方法,该方法通过总散点矩阵引入类信息。首先,将类间散点矩阵和类内散点矩阵结合得到总散点矩阵;其次,通过分解总散点矩阵得到的奇异值和左奇异向量构造新的数据矩阵;最后,利用稀疏非负矩阵分解对新数据矩阵进行分解,提取特征基因。最后,基因表达数据集的结果表明,与传统的基因选择方法相比,我们的方法可以提取更多的非生物胁迫下的特征基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Class-information-based SNMF method for selecting characteristic genes
The significant advantage of sparse methods is to reduce the complicacy of genes expression data, which makes them easier to understand and interpret. In this paper, we propose a novel Class-information-based Sparse Non-negative Matrix Factorization (CISNMF) method which introduces the class information by the total scatter matrix. Firstly, the total scatter matrix is obtained via combining the between-class and within-class scatter matrices. Secondly, a new data matrix is constructed via singular values and left singular vectors which can be obtained via decomposing the total scatter matrix. Finally, we decompose the new data matrix by using sparse Non-negative Matrix Factorization and extract characteristic genes. In the end, results on gene expression data sets show that our method can extract more characteristic genes in response to abiotic stresses than conventional gene selection methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological characterization of housekeeping genes in human protein-protein interaction network The correlation and regression analysis on aerosol optical depth, ice cover and cloud cover in Greenland Sea A semi-tensor product approach for Probabilistic Boolean Networks VaccineWatch: a monitoring system of vaccine messages from social media data Evolution analysis for HA gene of human influenza A H3N2 virus (1990 – 2013)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1