基于原始文本生成因果贝叶斯网络的半自动化框架的构建

Solat J. Sheikh
{"title":"基于原始文本生成因果贝叶斯网络的半自动化框架的构建","authors":"Solat J. Sheikh","doi":"10.24963/ijcai.2023/822","DOIUrl":null,"url":null,"abstract":"The availability of a large amount of unstructured text has generated interest in utilizing it for future decision-making and developing strategies in various critical domains. Despite some progress, automatically generating accurate reasoning models from the raw text is still an active area of research. Furthermore, most proposed approaches focus on a specific do-main. As such, their suggested transformation methods are usually unreliable when applied to other domains. This research aims to develop a framework, SCANER (Semi-automated CAusal Network Extraction from Raw text), to convert raw text into Causal Bayesian Networks (CBNs). The framework will then be employed in various domains to demonstrate its utilization as a decision-support tool. The preliminary experiments have focused on three domains: political narratives, food insecurity, and medical sciences. The future focus is on developing BNs from political narratives and modifying them through various methods to reduce the level of aggressiveness or extremity in the narratives without causing conflict among the masses or countries.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Building a Semi-Automated Framework for Generating Causal Bayesian Networks from Raw Text\",\"authors\":\"Solat J. Sheikh\",\"doi\":\"10.24963/ijcai.2023/822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability of a large amount of unstructured text has generated interest in utilizing it for future decision-making and developing strategies in various critical domains. Despite some progress, automatically generating accurate reasoning models from the raw text is still an active area of research. Furthermore, most proposed approaches focus on a specific do-main. As such, their suggested transformation methods are usually unreliable when applied to other domains. This research aims to develop a framework, SCANER (Semi-automated CAusal Network Extraction from Raw text), to convert raw text into Causal Bayesian Networks (CBNs). The framework will then be employed in various domains to demonstrate its utilization as a decision-support tool. The preliminary experiments have focused on three domains: political narratives, food insecurity, and medical sciences. The future focus is on developing BNs from political narratives and modifying them through various methods to reduce the level of aggressiveness or extremity in the narratives without causing conflict among the masses or countries.\",\"PeriodicalId\":394530,\"journal\":{\"name\":\"International Joint Conference on Artificial Intelligence\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Joint Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24963/ijcai.2023/822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Joint Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2023/822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大量非结构化文本的可用性引起了人们对利用它在各个关键领域进行未来决策和制定战略的兴趣。尽管取得了一些进展,但从原始文本中自动生成准确的推理模型仍然是一个活跃的研究领域。此外,大多数建议的方法都集中在特定的do-main上。因此,他们建议的转换方法在应用于其他领域时通常是不可靠的。本研究旨在开发一个框架,SCANER(原始文本的半自动因果网络提取),将原始文本转换为因果贝叶斯网络(cbn)。然后将在各个领域中使用该框架,以演示其作为决策支持工具的使用情况。初步实验集中在三个领域:政治叙事、粮食不安全和医学科学。未来的重点是从政治叙事中发展bn,并通过各种方法对其进行修改,以减少叙事中的侵略性或极端程度,而不会引起群众或国家之间的冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Building a Semi-Automated Framework for Generating Causal Bayesian Networks from Raw Text
The availability of a large amount of unstructured text has generated interest in utilizing it for future decision-making and developing strategies in various critical domains. Despite some progress, automatically generating accurate reasoning models from the raw text is still an active area of research. Furthermore, most proposed approaches focus on a specific do-main. As such, their suggested transformation methods are usually unreliable when applied to other domains. This research aims to develop a framework, SCANER (Semi-automated CAusal Network Extraction from Raw text), to convert raw text into Causal Bayesian Networks (CBNs). The framework will then be employed in various domains to demonstrate its utilization as a decision-support tool. The preliminary experiments have focused on three domains: political narratives, food insecurity, and medical sciences. The future focus is on developing BNs from political narratives and modifying them through various methods to reduce the level of aggressiveness or extremity in the narratives without causing conflict among the masses or countries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Formal Verification of Neuro-symbolic Multi-agent Systems RuleMatch: Matching Abstract Rules for Semi-supervised Learning of Human Standard Intelligence Tests Computing (1+epsilon)-Approximate Degeneracy in Sublinear Time AI and Decision Support for Sustainable Socio-Ecosystems Contrastive Learning and Reward Smoothing for Deep Portfolio Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1