利用生存力理论研究存在风的飞机鲁棒控制方法

J. Diepolder, P. Piprek, N. Botkin, V. Turova, F. Holzapfel
{"title":"利用生存力理论研究存在风的飞机鲁棒控制方法","authors":"J. Diepolder, P. Piprek, N. Botkin, V. Turova, F. Holzapfel","doi":"10.1109/ANZCC.2017.8298503","DOIUrl":null,"url":null,"abstract":"This paper presents a control concept for the application of viability kernels for aircraft control in the presence of wind disturbances. The viability (leadership) kernel of an appropriate conflict control problem with state constraints is computed using a grid approximation. In this differential game formulation, the first player is represented by the aircraft controls and the second player by the wind disturbances. The viability kernel represents a subset in the state space, in which the aircraft can be held arbitrarily long even if the opposing player uses any admissible control. Due to the curse of dimensionality in the grid solution, the computation of the viability kernel is restricted to low dimensional state spaces, which poses a challenge for the application in aircraft control. In our approach, the viability kernel is computed in the state space of the translational dynamics and the attitude kinematics. This reduces the dimensionality of the viability kernel to a six dimensional state space that can be handled by grid computers. The trajectory from the viability kernel solution is then tracked by the inner-loop controller based on a nonlinear dynamic inversion (NDI) control structure. The approach is illustrated using a simplified A300 aircraft model for cruise flight in the presence of wind.","PeriodicalId":429208,"journal":{"name":"2017 Australian and New Zealand Control Conference (ANZCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A robust aircraft control approach in the presence of wind using viability theory\",\"authors\":\"J. Diepolder, P. Piprek, N. Botkin, V. Turova, F. Holzapfel\",\"doi\":\"10.1109/ANZCC.2017.8298503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a control concept for the application of viability kernels for aircraft control in the presence of wind disturbances. The viability (leadership) kernel of an appropriate conflict control problem with state constraints is computed using a grid approximation. In this differential game formulation, the first player is represented by the aircraft controls and the second player by the wind disturbances. The viability kernel represents a subset in the state space, in which the aircraft can be held arbitrarily long even if the opposing player uses any admissible control. Due to the curse of dimensionality in the grid solution, the computation of the viability kernel is restricted to low dimensional state spaces, which poses a challenge for the application in aircraft control. In our approach, the viability kernel is computed in the state space of the translational dynamics and the attitude kinematics. This reduces the dimensionality of the viability kernel to a six dimensional state space that can be handled by grid computers. The trajectory from the viability kernel solution is then tracked by the inner-loop controller based on a nonlinear dynamic inversion (NDI) control structure. The approach is illustrated using a simplified A300 aircraft model for cruise flight in the presence of wind.\",\"PeriodicalId\":429208,\"journal\":{\"name\":\"2017 Australian and New Zealand Control Conference (ANZCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Australian and New Zealand Control Conference (ANZCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANZCC.2017.8298503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Australian and New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC.2017.8298503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种将生存核应用于存在风扰动的飞机控制的控制概念。利用网格逼近法计算具有状态约束的适当冲突控制问题的生存(领导)核。在这个微分博弈公式中,第一个参与者由飞机控制表示,第二个参与者由风干扰表示。生存核代表状态空间中的一个子集,在这个子集中,即使对方玩家使用任何允许的控制,飞机也可以保持任意长的时间。由于网格解的维数诅咒,生存核的计算被限制在低维状态空间中,这给在飞机控制中的应用带来了挑战。在我们的方法中,生存核在平移动力学和姿态运动学的状态空间中计算。这将生存核的维度降低到可以由网格计算机处理的六维状态空间。然后由基于非线性动态逆(NDI)控制结构的内环控制器跟踪生存核解的轨迹。该方法是用一个简化的A300飞机模型来说明在有风的情况下巡航飞行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A robust aircraft control approach in the presence of wind using viability theory
This paper presents a control concept for the application of viability kernels for aircraft control in the presence of wind disturbances. The viability (leadership) kernel of an appropriate conflict control problem with state constraints is computed using a grid approximation. In this differential game formulation, the first player is represented by the aircraft controls and the second player by the wind disturbances. The viability kernel represents a subset in the state space, in which the aircraft can be held arbitrarily long even if the opposing player uses any admissible control. Due to the curse of dimensionality in the grid solution, the computation of the viability kernel is restricted to low dimensional state spaces, which poses a challenge for the application in aircraft control. In our approach, the viability kernel is computed in the state space of the translational dynamics and the attitude kinematics. This reduces the dimensionality of the viability kernel to a six dimensional state space that can be handled by grid computers. The trajectory from the viability kernel solution is then tracked by the inner-loop controller based on a nonlinear dynamic inversion (NDI) control structure. The approach is illustrated using a simplified A300 aircraft model for cruise flight in the presence of wind.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite-time boundedness of uncertain Markovian jump systems: A sliding mode approach Effects of actuator dynamics on disturbance rejection for small multi-rotor UAS Coexistence for industrial wireless communication systems in the context of industrie 4.0 Quadrotor helicopters trajectory tracking with stochastic model predictive control Functional observer design for linear discrete-time stochastic system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1