减少订单模型的不确定性管理和零缺陷控制在密封制造

Ismael Viejo Monge, Noelia Alcalá Serrano, S. Izquierdo, Ignacio Conde Vallejo, V. Zambrano, Leticia A. Gracia Grijota
{"title":"减少订单模型的不确定性管理和零缺陷控制在密封制造","authors":"Ismael Viejo Monge, Noelia Alcalá Serrano, S. Izquierdo, Ignacio Conde Vallejo, V. Zambrano, Leticia A. Gracia Grijota","doi":"10.1109/INDIN41052.2019.8972097","DOIUrl":null,"url":null,"abstract":"Reaching a zero-defect manufacturing is one of the biggest challenge for the current manufacturing industry. One of the barriers to overcome is to handle appropriately the uncertainty propagation across manufacturing lines, that hinder the development of accurate control systems. Within this framework, we introduce a non-intrusive method for uncertainty management that relies on a Monte Carlo approach building on a deterministic parametric real-time simulation model. The real-time simulation model is a Reduced Order Model (ROM) based on a generalized Canonical Polyadic Decomposition. The method is introduced using an industrial test case as demonstrator, namely car door/body seals manufacturing by means of continuous coextrusion of a metal strip and various types of rubber. The resulting model is used to unify uncertainty management of: (i) aleatory and epistemic origin, and (ii) material characterization and process parameters.","PeriodicalId":260220,"journal":{"name":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reduced order models for uncertainty management and zero-defect control in seal manufacturing\",\"authors\":\"Ismael Viejo Monge, Noelia Alcalá Serrano, S. Izquierdo, Ignacio Conde Vallejo, V. Zambrano, Leticia A. Gracia Grijota\",\"doi\":\"10.1109/INDIN41052.2019.8972097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reaching a zero-defect manufacturing is one of the biggest challenge for the current manufacturing industry. One of the barriers to overcome is to handle appropriately the uncertainty propagation across manufacturing lines, that hinder the development of accurate control systems. Within this framework, we introduce a non-intrusive method for uncertainty management that relies on a Monte Carlo approach building on a deterministic parametric real-time simulation model. The real-time simulation model is a Reduced Order Model (ROM) based on a generalized Canonical Polyadic Decomposition. The method is introduced using an industrial test case as demonstrator, namely car door/body seals manufacturing by means of continuous coextrusion of a metal strip and various types of rubber. The resulting model is used to unify uncertainty management of: (i) aleatory and epistemic origin, and (ii) material characterization and process parameters.\",\"PeriodicalId\":260220,\"journal\":{\"name\":\"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN41052.2019.8972097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN41052.2019.8972097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

实现零缺陷制造是当前制造业面临的最大挑战之一。需要克服的障碍之一是如何适当地处理不确定性在生产线上的传播,这阻碍了精确控制系统的发展。在此框架内,我们引入了一种非侵入式的不确定性管理方法,该方法依赖于建立在确定性参数实时仿真模型上的蒙特卡罗方法。实时仿真模型是基于广义正则多进分解的降阶模型。以一个工业试验案例为例,介绍了一种用金属条与各种橡胶连续共挤制造车门/车身密封件的方法。由此产生的模型用于统一不确定性管理:(i)遗传和认知起源,以及(ii)材料表征和工艺参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduced order models for uncertainty management and zero-defect control in seal manufacturing
Reaching a zero-defect manufacturing is one of the biggest challenge for the current manufacturing industry. One of the barriers to overcome is to handle appropriately the uncertainty propagation across manufacturing lines, that hinder the development of accurate control systems. Within this framework, we introduce a non-intrusive method for uncertainty management that relies on a Monte Carlo approach building on a deterministic parametric real-time simulation model. The real-time simulation model is a Reduced Order Model (ROM) based on a generalized Canonical Polyadic Decomposition. The method is introduced using an industrial test case as demonstrator, namely car door/body seals manufacturing by means of continuous coextrusion of a metal strip and various types of rubber. The resulting model is used to unify uncertainty management of: (i) aleatory and epistemic origin, and (ii) material characterization and process parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital Twin in Industry 4.0: Technologies, Applications and Challenges Using Multi-Agent Systems for Demand Response Aggregators: Analysis and Requirements for the Development Developing a Secure, Smart Microgrid Energy Market using Distributed Ledger Technologies An Intelligent Assistance System for Controlling Wind-Assisted Ship Propulsion Systems OPC UA Information Model and a Wrapper for IEC 61499 Runtimes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1