递归定阶协方差最小二乘算法

M. Honig
{"title":"递归定阶协方差最小二乘算法","authors":"M. Honig","doi":"10.1002/J.1538-7305.1983.TB03462.X","DOIUrl":null,"url":null,"abstract":"This paper derives fixed-order recursive Least-Squares (LS) algorithms that can be used in system identification and adaptive filtering applications such as spectral estimation, and speech analysis and synthesis. These algorithms solve the sliding-window and growing-memory covariance LS estimation problems, and require less computation than both unnormalized and normalized versions of the computationally efficient order-recursive (lattice) covariance algorithms previously presented. The geometric or Hilbert space approach, originally introduced by Lee and Morf to solve the prewindowed LS problem, is used to systematically generate least-squares recursions. We show that combining subsets of these recursions results in prewindowed LS lattice and fixed-order (transversal) algorithms, and in sliding-window and growing-memory covariance lattice and transversal algorithms. The paper discusses both least-squares prediction and joint-process estimation.","PeriodicalId":447574,"journal":{"name":"The Bell System Technical Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1983-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Recursive fixed-order covariance Least-Squares algorithms\",\"authors\":\"M. Honig\",\"doi\":\"10.1002/J.1538-7305.1983.TB03462.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper derives fixed-order recursive Least-Squares (LS) algorithms that can be used in system identification and adaptive filtering applications such as spectral estimation, and speech analysis and synthesis. These algorithms solve the sliding-window and growing-memory covariance LS estimation problems, and require less computation than both unnormalized and normalized versions of the computationally efficient order-recursive (lattice) covariance algorithms previously presented. The geometric or Hilbert space approach, originally introduced by Lee and Morf to solve the prewindowed LS problem, is used to systematically generate least-squares recursions. We show that combining subsets of these recursions results in prewindowed LS lattice and fixed-order (transversal) algorithms, and in sliding-window and growing-memory covariance lattice and transversal algorithms. The paper discusses both least-squares prediction and joint-process estimation.\",\"PeriodicalId\":447574,\"journal\":{\"name\":\"The Bell System Technical Journal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1983-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Bell System Technical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/J.1538-7305.1983.TB03462.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Bell System Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/J.1538-7305.1983.TB03462.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文导出了定阶递归最小二乘(LS)算法,该算法可用于系统识别和自适应滤波应用,如频谱估计、语音分析和合成。这些算法解决了滑动窗口和增长内存协方差LS估计问题,并且比以前提出的计算效率高的顺序递归(点阵)协方差算法的非归一化和归一化版本需要更少的计算量。几何或希尔伯特空间方法,最初由Lee和Morf提出,用于解决预窗LS问题,用于系统地生成最小二乘递归。我们证明了组合这些递归的子集可以得到预窗LS晶格和定阶(横向)算法,以及滑动窗口和增长记忆协方差晶格和横向算法。本文讨论了最小二乘预测和联合过程估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recursive fixed-order covariance Least-Squares algorithms
This paper derives fixed-order recursive Least-Squares (LS) algorithms that can be used in system identification and adaptive filtering applications such as spectral estimation, and speech analysis and synthesis. These algorithms solve the sliding-window and growing-memory covariance LS estimation problems, and require less computation than both unnormalized and normalized versions of the computationally efficient order-recursive (lattice) covariance algorithms previously presented. The geometric or Hilbert space approach, originally introduced by Lee and Morf to solve the prewindowed LS problem, is used to systematically generate least-squares recursions. We show that combining subsets of these recursions results in prewindowed LS lattice and fixed-order (transversal) algorithms, and in sliding-window and growing-memory covariance lattice and transversal algorithms. The paper discusses both least-squares prediction and joint-process estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acronyms and abbreviations Acronyms and abbreviations Time-Compression Multiplexing (TCM) of three broadcast-quality TV signals on a satellite transponder Theory of reflection from antireflection coatings Equivalent queueing networks and their use in approximate equilibrium analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1