通过上下文异常检测检测网络性能异常

G. Dimopoulos, P. Barlet-Ros, C. Dovrolis, Ilias Leontiadis
{"title":"通过上下文异常检测检测网络性能异常","authors":"G. Dimopoulos, P. Barlet-Ros, C. Dovrolis, Ilias Leontiadis","doi":"10.1109/IWMN.2017.8078404","DOIUrl":null,"url":null,"abstract":"Network performance anomalies can be defined as abnormal and significant variations in a network's traffic levels. Being able to detect anomalies is critical for both network operators and end users. However, the accurate detection without raising false alarms can become a challenging task when there is high variance in the traffic. To address this problem, we present in this paper a novel methodology for detecting performance anomalies based on contextual information. The proposed method is compared with the state of the art and is evaluated with high accuracy on both synthetic and real network traffic.","PeriodicalId":201479,"journal":{"name":"2017 IEEE International Workshop on Measurement and Networking (M&N)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Detecting network performance anomalies with contextual anomaly detection\",\"authors\":\"G. Dimopoulos, P. Barlet-Ros, C. Dovrolis, Ilias Leontiadis\",\"doi\":\"10.1109/IWMN.2017.8078404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network performance anomalies can be defined as abnormal and significant variations in a network's traffic levels. Being able to detect anomalies is critical for both network operators and end users. However, the accurate detection without raising false alarms can become a challenging task when there is high variance in the traffic. To address this problem, we present in this paper a novel methodology for detecting performance anomalies based on contextual information. The proposed method is compared with the state of the art and is evaluated with high accuracy on both synthetic and real network traffic.\",\"PeriodicalId\":201479,\"journal\":{\"name\":\"2017 IEEE International Workshop on Measurement and Networking (M&N)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Workshop on Measurement and Networking (M&N)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWMN.2017.8078404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Measurement and Networking (M&N)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWMN.2017.8078404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

网络性能异常可以定义为网络流量水平的异常和显著变化。能够检测异常对于网络运营商和最终用户都至关重要。然而,在流量变化较大的情况下,如何在不产生误报的情况下进行准确的检测是一项具有挑战性的任务。为了解决这个问题,我们在本文中提出了一种基于上下文信息检测性能异常的新方法。将该方法与现有方法进行了比较,并在综合网络流量和真实网络流量上进行了高精度评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting network performance anomalies with contextual anomaly detection
Network performance anomalies can be defined as abnormal and significant variations in a network's traffic levels. Being able to detect anomalies is critical for both network operators and end users. However, the accurate detection without raising false alarms can become a challenging task when there is high variance in the traffic. To address this problem, we present in this paper a novel methodology for detecting performance anomalies based on contextual information. The proposed method is compared with the state of the art and is evaluated with high accuracy on both synthetic and real network traffic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A crowdfunded personal air quality monitor infrastructure for active life applications An investigation on an interference filtering technique for array diagnosis using sparsity Evaluation of communication latency in industrial IoT applications Roughness assessment of reflector surface via near-field data Measurement system with leaky coaxial cables operating as distributed antennas for UHF-RFID readers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1