多光谱成像仪数据无损压缩算法的比较研究

M. Grossberg, I. Gladkova, S. Gottipati, M. Rabinowitz, P. Alabi, T. George, António Pacheco
{"title":"多光谱成像仪数据无损压缩算法的比较研究","authors":"M. Grossberg, I. Gladkova, S. Gottipati, M. Rabinowitz, P. Alabi, T. George, António Pacheco","doi":"10.1117/12.821007","DOIUrl":null,"url":null,"abstract":"High resolution multi-spectral imagers are becoming increasingly important tools for studying and monitoring the earth. As much of the data from these multi-spectral imagers is used for quantitative analysis, the role of lossless compression is critical in the transmission, distribution, archiving, and management of the data. To evaluate the performance of various compression algorithms on multi-spectral images, we conducted statistical evaluation on datasets consisting of hundreds of granules from both geostationary and polar imagers. We broke these datasets up by different criteria such as hemisphere, season, and time-of-day in order to ensure the results are robust, reliable, and applicable for future imagers.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Comparative Study of Lossless Compression Algorithms on Multi-spectral Imager Data\",\"authors\":\"M. Grossberg, I. Gladkova, S. Gottipati, M. Rabinowitz, P. Alabi, T. George, António Pacheco\",\"doi\":\"10.1117/12.821007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High resolution multi-spectral imagers are becoming increasingly important tools for studying and monitoring the earth. As much of the data from these multi-spectral imagers is used for quantitative analysis, the role of lossless compression is critical in the transmission, distribution, archiving, and management of the data. To evaluate the performance of various compression algorithms on multi-spectral images, we conducted statistical evaluation on datasets consisting of hundreds of granules from both geostationary and polar imagers. We broke these datasets up by different criteria such as hemisphere, season, and time-of-day in order to ensure the results are robust, reliable, and applicable for future imagers.\",\"PeriodicalId\":377880,\"journal\":{\"name\":\"2009 Data Compression Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.821007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.821007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

高分辨率多光谱成像仪正日益成为研究和监测地球的重要工具。由于这些多光谱成像仪的大部分数据用于定量分析,因此无损压缩在数据的传输、分发、存档和管理中起着至关重要的作用。为了评估各种压缩算法在多光谱图像上的性能,我们对来自地球静止和极地成像仪的数百个颗粒组成的数据集进行了统计评估。我们根据不同的标准(如半球、季节和一天中的时间)对这些数据集进行了分解,以确保结果稳健、可靠,并适用于未来的成像仪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparative Study of Lossless Compression Algorithms on Multi-spectral Imager Data
High resolution multi-spectral imagers are becoming increasingly important tools for studying and monitoring the earth. As much of the data from these multi-spectral imagers is used for quantitative analysis, the role of lossless compression is critical in the transmission, distribution, archiving, and management of the data. To evaluate the performance of various compression algorithms on multi-spectral images, we conducted statistical evaluation on datasets consisting of hundreds of granules from both geostationary and polar imagers. We broke these datasets up by different criteria such as hemisphere, season, and time-of-day in order to ensure the results are robust, reliable, and applicable for future imagers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analog Joint Source Channel Coding Using Space-Filling Curves and MMSE Decoding Tree Histogram Coding for Mobile Image Matching Clustered Reversible-KLT for Progressive Lossy-to-Lossless 3d Image Coding Optimized Source-Channel Coding of Video Signals in Packet Loss Environments New Families and New Members of Integer Sequence Based Coding Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1