{"title":"基于二极管的盐溶液传感器的研制","authors":"Li Fang Lai, N. Zainal, C. Soon","doi":"10.30880/emait.2020.01.01.002","DOIUrl":null,"url":null,"abstract":"High blood pressure/hypertension is a severe medical issue among Malaysians that could be reduced by monitoring our salt/sodium intake. One way is to use intraoral salt sensor; this in-mouth method however may cause discomfort and adopts complex and costly fabrication processes. Hence, an external and reusable electronic device, that could be used as a “sweat-sensor”, is preferred in detecting the sodium intake of the body. In this study, a potentiometric diode-based salt solution sensor was designed and fabricated in order to detect different salt solution concentrations with applied external voltage. A p-n junction diode sensor was successfully designed and fabricated using four consecutive techniques; thermal wet oxidation, photolithography, thermal diffusion and metallization. The average sheet resistance and resistivity of the diode sensor were measured to be 3.50 x 105 ± 0.66 Ω⁄sq and 3.05 ± 0.5 Ωcm respectively. This sensor showed ideal I-V diode characteristics with a knee voltage of 11.5V in forward bias condition and breakdown voltage of -4 V in reverse bias condition. For salt concentration detection, the sensor was able to detect salt concentration changes with respect to current flow, up to 45 mg/mL.","PeriodicalId":357370,"journal":{"name":"Emerging Advances in Integrated Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of A Diode-based Salt Solution Sensor\",\"authors\":\"Li Fang Lai, N. Zainal, C. Soon\",\"doi\":\"10.30880/emait.2020.01.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High blood pressure/hypertension is a severe medical issue among Malaysians that could be reduced by monitoring our salt/sodium intake. One way is to use intraoral salt sensor; this in-mouth method however may cause discomfort and adopts complex and costly fabrication processes. Hence, an external and reusable electronic device, that could be used as a “sweat-sensor”, is preferred in detecting the sodium intake of the body. In this study, a potentiometric diode-based salt solution sensor was designed and fabricated in order to detect different salt solution concentrations with applied external voltage. A p-n junction diode sensor was successfully designed and fabricated using four consecutive techniques; thermal wet oxidation, photolithography, thermal diffusion and metallization. The average sheet resistance and resistivity of the diode sensor were measured to be 3.50 x 105 ± 0.66 Ω⁄sq and 3.05 ± 0.5 Ωcm respectively. This sensor showed ideal I-V diode characteristics with a knee voltage of 11.5V in forward bias condition and breakdown voltage of -4 V in reverse bias condition. For salt concentration detection, the sensor was able to detect salt concentration changes with respect to current flow, up to 45 mg/mL.\",\"PeriodicalId\":357370,\"journal\":{\"name\":\"Emerging Advances in Integrated Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Advances in Integrated Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30880/emait.2020.01.01.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Advances in Integrated Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/emait.2020.01.01.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High blood pressure/hypertension is a severe medical issue among Malaysians that could be reduced by monitoring our salt/sodium intake. One way is to use intraoral salt sensor; this in-mouth method however may cause discomfort and adopts complex and costly fabrication processes. Hence, an external and reusable electronic device, that could be used as a “sweat-sensor”, is preferred in detecting the sodium intake of the body. In this study, a potentiometric diode-based salt solution sensor was designed and fabricated in order to detect different salt solution concentrations with applied external voltage. A p-n junction diode sensor was successfully designed and fabricated using four consecutive techniques; thermal wet oxidation, photolithography, thermal diffusion and metallization. The average sheet resistance and resistivity of the diode sensor were measured to be 3.50 x 105 ± 0.66 Ω⁄sq and 3.05 ± 0.5 Ωcm respectively. This sensor showed ideal I-V diode characteristics with a knee voltage of 11.5V in forward bias condition and breakdown voltage of -4 V in reverse bias condition. For salt concentration detection, the sensor was able to detect salt concentration changes with respect to current flow, up to 45 mg/mL.