激光雷达点云语义分割的多尺度体素类平衡ASPP

K. Kumar, S. Al-Stouhi
{"title":"激光雷达点云语义分割的多尺度体素类平衡ASPP","authors":"K. Kumar, S. Al-Stouhi","doi":"10.1109/WACVW52041.2021.00017","DOIUrl":null,"url":null,"abstract":"This paper explores efficient techniques to improve PolarNet model performance to address the real-time semantic segmentation of LiDAR point clouds. The core framework consists of an encoder network, Atrous spatial pyramid pooling (ASPP)/Dense Atrous spatial pyramid pooling (DenseASPP) followed by a decoder network. Encoder extracts multi-scale voxel information in a top-down manner while decoder fuses multiple feature maps from various scales in a bottom-up manner. In between encoder and decoder block, an ASPP/DenseASPP block is inserted to enlarge receptive fields in a very dense manner. In contrast to PolarNet model, we use weighted cross entropy in conjunction with Lovasz-softmax loss to improve segmentation accuracy. Also this paper accelerates training mechanism of PolarNet model by incorporating learning-rate schedulers in conjunction with Adam optimizer for faster convergence with fewer epochs without degrading accuracy. Extensive experiments conducted on challenging SemanticKITTI dataset shows that our high-resolution-grid model obtains competitive state-of-art result of 60.6 mIOU @21fps whereas our low-resolution-grid model obtains 54.01 mIOU @35fps thereby balancing accuracy/speed trade-off.","PeriodicalId":313062,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-Scale Voxel Class Balanced ASPP for LIDAR Pointcloud Semantic Segmentation\",\"authors\":\"K. Kumar, S. Al-Stouhi\",\"doi\":\"10.1109/WACVW52041.2021.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores efficient techniques to improve PolarNet model performance to address the real-time semantic segmentation of LiDAR point clouds. The core framework consists of an encoder network, Atrous spatial pyramid pooling (ASPP)/Dense Atrous spatial pyramid pooling (DenseASPP) followed by a decoder network. Encoder extracts multi-scale voxel information in a top-down manner while decoder fuses multiple feature maps from various scales in a bottom-up manner. In between encoder and decoder block, an ASPP/DenseASPP block is inserted to enlarge receptive fields in a very dense manner. In contrast to PolarNet model, we use weighted cross entropy in conjunction with Lovasz-softmax loss to improve segmentation accuracy. Also this paper accelerates training mechanism of PolarNet model by incorporating learning-rate schedulers in conjunction with Adam optimizer for faster convergence with fewer epochs without degrading accuracy. Extensive experiments conducted on challenging SemanticKITTI dataset shows that our high-resolution-grid model obtains competitive state-of-art result of 60.6 mIOU @21fps whereas our low-resolution-grid model obtains 54.01 mIOU @35fps thereby balancing accuracy/speed trade-off.\",\"PeriodicalId\":313062,\"journal\":{\"name\":\"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACVW52041.2021.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW52041.2021.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文探讨了提高偏振网模型性能的有效技术,以解决激光雷达点云的实时语义分割问题。核心框架由编码器网络、亚特劳斯空间金字塔池(ASPP)/密集亚特劳斯空间金字塔池(DenseASPP)和解码器网络组成。编码器以自上而下的方式提取多尺度体素信息,解码器以自下而上的方式融合多个不同尺度的特征图。在编码器和解码器块之间,插入一个ASPP/DenseASPP块,以非常密集的方式扩大接收域。与PolarNet模型相比,我们使用加权交叉熵结合Lovasz-softmax损失来提高分割精度。通过结合学习率调优器和Adam优化器来加速PolarNet模型的训练机制,在不降低精度的前提下,以更少的epoch更快地收敛。在具有挑战性的SemanticKITTI数据集上进行的大量实验表明,我们的高分辨率网格模型获得了具有竞争力的最新结果60.6 mIOU @21fps,而我们的低分辨率网格模型获得了54.01 mIOU @35fps,从而平衡了精度和速度之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Scale Voxel Class Balanced ASPP for LIDAR Pointcloud Semantic Segmentation
This paper explores efficient techniques to improve PolarNet model performance to address the real-time semantic segmentation of LiDAR point clouds. The core framework consists of an encoder network, Atrous spatial pyramid pooling (ASPP)/Dense Atrous spatial pyramid pooling (DenseASPP) followed by a decoder network. Encoder extracts multi-scale voxel information in a top-down manner while decoder fuses multiple feature maps from various scales in a bottom-up manner. In between encoder and decoder block, an ASPP/DenseASPP block is inserted to enlarge receptive fields in a very dense manner. In contrast to PolarNet model, we use weighted cross entropy in conjunction with Lovasz-softmax loss to improve segmentation accuracy. Also this paper accelerates training mechanism of PolarNet model by incorporating learning-rate schedulers in conjunction with Adam optimizer for faster convergence with fewer epochs without degrading accuracy. Extensive experiments conducted on challenging SemanticKITTI dataset shows that our high-resolution-grid model obtains competitive state-of-art result of 60.6 mIOU @21fps whereas our low-resolution-grid model obtains 54.01 mIOU @35fps thereby balancing accuracy/speed trade-off.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Virtual 3D City Generation for Synthetic Data Collection Facial Expression Neutralization With StoicNet Explainable Fingerprint ROI Segmentation Using Monte Carlo Dropout An Explainable Attention-Guided Iris Presentation Attack Detector Geeks and guests: Estimating player’s level of experience from board game behaviors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1