表面法线映射的变分正则化与融合

Bernhard Zeisl, C. Zach, M. Pollefeys
{"title":"表面法线映射的变分正则化与融合","authors":"Bernhard Zeisl, C. Zach, M. Pollefeys","doi":"10.1109/3DV.2014.92","DOIUrl":null,"url":null,"abstract":"In this work we propose an optimization scheme for variational, vectorial denoising and fusion of surface normal maps. These are common outputs of shape from shading, photometric stereo or single image reconstruction methods, but tend to be noisy and request post-processing for further usage. Processing of normals maps, which do not provide knowledge about the underlying scene depth, is complicated due to their unit length constraint which renders the optimization non-linear and non-convex. The presented approach builds upon a linearization of the constraint to obtain a convex relaxation, while guaranteeing convergence. Experimental results demonstrate that our algorithm generates more consistent representations from estimated and potentially complementary normal maps.","PeriodicalId":275516,"journal":{"name":"2014 2nd International Conference on 3D Vision","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Variational Regularization and Fusion of Surface Normal Maps\",\"authors\":\"Bernhard Zeisl, C. Zach, M. Pollefeys\",\"doi\":\"10.1109/3DV.2014.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we propose an optimization scheme for variational, vectorial denoising and fusion of surface normal maps. These are common outputs of shape from shading, photometric stereo or single image reconstruction methods, but tend to be noisy and request post-processing for further usage. Processing of normals maps, which do not provide knowledge about the underlying scene depth, is complicated due to their unit length constraint which renders the optimization non-linear and non-convex. The presented approach builds upon a linearization of the constraint to obtain a convex relaxation, while guaranteeing convergence. Experimental results demonstrate that our algorithm generates more consistent representations from estimated and potentially complementary normal maps.\",\"PeriodicalId\":275516,\"journal\":{\"name\":\"2014 2nd International Conference on 3D Vision\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 2nd International Conference on 3D Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV.2014.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on 3D Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2014.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在这项工作中,我们提出了一种表面法线贴图的变分、矢量去噪和融合的优化方案。这些是来自阴影、光度立体或单一图像重建方法的常见形状输出,但往往是嘈杂的,需要后处理以进一步使用。由于法线贴图的单位长度限制,使得优化变得非线性和非凸,因此法线贴图的处理非常复杂,因为法线贴图不提供底层场景深度的信息。提出的方法建立在约束的线性化上,以获得凸松弛,同时保证收敛。实验结果表明,我们的算法从估计的和可能互补的法线映射中产生更一致的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variational Regularization and Fusion of Surface Normal Maps
In this work we propose an optimization scheme for variational, vectorial denoising and fusion of surface normal maps. These are common outputs of shape from shading, photometric stereo or single image reconstruction methods, but tend to be noisy and request post-processing for further usage. Processing of normals maps, which do not provide knowledge about the underlying scene depth, is complicated due to their unit length constraint which renders the optimization non-linear and non-convex. The presented approach builds upon a linearization of the constraint to obtain a convex relaxation, while guaranteeing convergence. Experimental results demonstrate that our algorithm generates more consistent representations from estimated and potentially complementary normal maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Querying 3D Mesh Sequences for Human Action Retrieval Temporal Octrees for Compressing Dynamic Point Cloud Streams High-Quality Depth Recovery via Interactive Multi-view Stereo Iterative Closest Spectral Kernel Maps Close-Range Photometric Stereo with Point Light Sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1