Florbetapir图像分析在阿尔茨海默病诊断中的应用

I. Sahumbaiev, A. Popov, N. Ivanushkina, J. Ramírez, J. Górriz
{"title":"Florbetapir图像分析在阿尔茨海默病诊断中的应用","authors":"I. Sahumbaiev, A. Popov, N. Ivanushkina, J. Ramírez, J. Górriz","doi":"10.1109/ELNANO.2018.8477516","DOIUrl":null,"url":null,"abstract":"Over decades Alzheimer's disease (AD) remains without decent cure, and only disease-modifying methods are available. This paper is devoted to the analysis of amyloid-PET images with florbetapir (18F-AV-45) tracer to detect the presence of AD or Mild Cognitive Impairment (MCI). The first part of the article dedicated to image processing pipeline, specifically, spacial normalisation and feature extraction. The second part is devoted to the development of the multiclass classifier with deep learning methods. In particular, deep neural network was developed to distinguish three stages: health control (HC), MCI and AD. After tuning and training a neural network, the final specificity of 78% and sensitivity of 90% has been achieved.","PeriodicalId":269665,"journal":{"name":"2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Florbetapir Image Analysis for Alzheimer's Disease Diagnosis\",\"authors\":\"I. Sahumbaiev, A. Popov, N. Ivanushkina, J. Ramírez, J. Górriz\",\"doi\":\"10.1109/ELNANO.2018.8477516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over decades Alzheimer's disease (AD) remains without decent cure, and only disease-modifying methods are available. This paper is devoted to the analysis of amyloid-PET images with florbetapir (18F-AV-45) tracer to detect the presence of AD or Mild Cognitive Impairment (MCI). The first part of the article dedicated to image processing pipeline, specifically, spacial normalisation and feature extraction. The second part is devoted to the development of the multiclass classifier with deep learning methods. In particular, deep neural network was developed to distinguish three stages: health control (HC), MCI and AD. After tuning and training a neural network, the final specificity of 78% and sensitivity of 90% has been achieved.\",\"PeriodicalId\":269665,\"journal\":{\"name\":\"2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELNANO.2018.8477516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELNANO.2018.8477516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

几十年来,阿尔茨海默病(AD)仍然没有像样的治疗方法,只有改善疾病的方法可用。本文研究了florbetapir (18F-AV-45)示踪剂对淀粉样蛋白pet图像的分析,以检测AD或轻度认知障碍(MCI)的存在。文章的第一部分专门介绍了流水线图像处理,具体来说,是空间归一化和特征提取。第二部分研究了基于深度学习方法的多类分类器的开发。特别是,深度神经网络的发展,以区分三个阶段:健康控制(HC), MCI和AD。经过神经网络的调整和训练,最终实现了78%的特异性和90%的灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Florbetapir Image Analysis for Alzheimer's Disease Diagnosis
Over decades Alzheimer's disease (AD) remains without decent cure, and only disease-modifying methods are available. This paper is devoted to the analysis of amyloid-PET images with florbetapir (18F-AV-45) tracer to detect the presence of AD or Mild Cognitive Impairment (MCI). The first part of the article dedicated to image processing pipeline, specifically, spacial normalisation and feature extraction. The second part is devoted to the development of the multiclass classifier with deep learning methods. In particular, deep neural network was developed to distinguish three stages: health control (HC), MCI and AD. After tuning and training a neural network, the final specificity of 78% and sensitivity of 90% has been achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coexistence of Wireless Avionics Intra-Communications Networks Based on Frequency Hopping with Collision Avoidance High Overshoot Correction Method in Voltage Regulators The Methods and Means for Enhancement of the Rehabilitation Efficiency of the Tone of the Spine Areas Improving the Quality of Electrical Energy in the Railway Power Supply System High Dynamic Range Video Camera with Elements of the Pattern Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1