基于深度卷积神经网络的手指静脉识别

Lecheng Weng, Xiaoqiang Li, Wenfeng Wang
{"title":"基于深度卷积神经网络的手指静脉识别","authors":"Lecheng Weng, Xiaoqiang Li, Wenfeng Wang","doi":"10.1109/CISP-BMEI51763.2020.9263601","DOIUrl":null,"url":null,"abstract":"In the process of a finger vein image acquisition, finger vein images are susceptible to external factors like finger posture and light source conditions, which will result in poor recognition accuracy. Therefore, a finger vein recognition method based on improved convolution neural net work is proposed to improve the accuracy and robustness of the image recognition. Firstly, the collected finger vein image is preprocessed by image segmentation, finger root key point location and image extraction in the region of interest (ROI). Secondly, according to the application context of finger vein recognition, the convolution neural network structure is adjusted appropriately, and the output of convolution layer is standardized in batches. The optimized neural network is used to automatically extract, classify and identify the features of the preprocessed images. A large number of experiments were performed on public finger print data sets of Shandong University. The optimal recognition rates are 90% respectively. The experiments verify the effectiveness of this method.","PeriodicalId":346757,"journal":{"name":"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Finger vein recognition based on Deep Convolutional Neural Networks\",\"authors\":\"Lecheng Weng, Xiaoqiang Li, Wenfeng Wang\",\"doi\":\"10.1109/CISP-BMEI51763.2020.9263601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the process of a finger vein image acquisition, finger vein images are susceptible to external factors like finger posture and light source conditions, which will result in poor recognition accuracy. Therefore, a finger vein recognition method based on improved convolution neural net work is proposed to improve the accuracy and robustness of the image recognition. Firstly, the collected finger vein image is preprocessed by image segmentation, finger root key point location and image extraction in the region of interest (ROI). Secondly, according to the application context of finger vein recognition, the convolution neural network structure is adjusted appropriately, and the output of convolution layer is standardized in batches. The optimized neural network is used to automatically extract, classify and identify the features of the preprocessed images. A large number of experiments were performed on public finger print data sets of Shandong University. The optimal recognition rates are 90% respectively. The experiments verify the effectiveness of this method.\",\"PeriodicalId\":346757,\"journal\":{\"name\":\"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI51763.2020.9263601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI51763.2020.9263601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在采集指静脉图像的过程中,指静脉图像容易受到手指姿势、光源条件等外界因素的影响,导致识别精度较差。为此,提出了一种基于改进卷积神经网络的手指静脉识别方法,以提高图像识别的准确性和鲁棒性。首先,对采集到的指静脉图像进行图像分割、手指根关键点定位和感兴趣区域图像提取等预处理;其次,根据手指静脉识别的应用背景,适当调整卷积神经网络结构,对卷积层的输出进行批量标准化;利用优化后的神经网络对预处理后的图像进行特征的自动提取、分类和识别。在山东大学公开的指纹数据集上进行了大量的实验。最佳识别率分别为90%。实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finger vein recognition based on Deep Convolutional Neural Networks
In the process of a finger vein image acquisition, finger vein images are susceptible to external factors like finger posture and light source conditions, which will result in poor recognition accuracy. Therefore, a finger vein recognition method based on improved convolution neural net work is proposed to improve the accuracy and robustness of the image recognition. Firstly, the collected finger vein image is preprocessed by image segmentation, finger root key point location and image extraction in the region of interest (ROI). Secondly, according to the application context of finger vein recognition, the convolution neural network structure is adjusted appropriately, and the output of convolution layer is standardized in batches. The optimized neural network is used to automatically extract, classify and identify the features of the preprocessed images. A large number of experiments were performed on public finger print data sets of Shandong University. The optimal recognition rates are 90% respectively. The experiments verify the effectiveness of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network Attack Detection based on Domain Attack Behavior Analysis Feature selection of time series based on reinforcement learning An Improved Double-Layer Kalman Filter Attitude Algorithm For Motion Capture System Probability Boltzmann Machine Network for Face Detection on Video Evolutionary Optimized Multiple Instance Concept Learning for Beat-to-Beat Heart Rate Estimation from Electrocardiograms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1