使用DBSCAN算法和shiny web框架进行热点聚类

K. Nisa, Hari Agung Andrianto, Rahmah Mardhiyyah
{"title":"使用DBSCAN算法和shiny web框架进行热点聚类","authors":"K. Nisa, Hari Agung Andrianto, Rahmah Mardhiyyah","doi":"10.1109/ICACSIS.2014.7065840","DOIUrl":null,"url":null,"abstract":"Forest fires are a serious problem that occurs repeatedly in Indonesia. Fire events can be predicted by monitoring the datasets of hotspots which are recorded through remote sensing satellite. This study aims to build a web application that performs clustering on the hotspots data. This application implements DBSCAN algorithm using Shiny web framework for R programming language. Clustering is performed on a dataset of hotspots on Kalimantan Island and South Sumatra Province in 2002-2003. The spread pattern of hotspots resulted by this clustering can be used as a predictive model of forest fires occurence and can be accessed through the internet browser.","PeriodicalId":443250,"journal":{"name":"2014 International Conference on Advanced Computer Science and Information System","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Hotspot clustering using DBSCAN algorithm and shiny web framework\",\"authors\":\"K. Nisa, Hari Agung Andrianto, Rahmah Mardhiyyah\",\"doi\":\"10.1109/ICACSIS.2014.7065840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forest fires are a serious problem that occurs repeatedly in Indonesia. Fire events can be predicted by monitoring the datasets of hotspots which are recorded through remote sensing satellite. This study aims to build a web application that performs clustering on the hotspots data. This application implements DBSCAN algorithm using Shiny web framework for R programming language. Clustering is performed on a dataset of hotspots on Kalimantan Island and South Sumatra Province in 2002-2003. The spread pattern of hotspots resulted by this clustering can be used as a predictive model of forest fires occurence and can be accessed through the internet browser.\",\"PeriodicalId\":443250,\"journal\":{\"name\":\"2014 International Conference on Advanced Computer Science and Information System\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Advanced Computer Science and Information System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS.2014.7065840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advanced Computer Science and Information System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2014.7065840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

森林火灾是印尼反复发生的严重问题。通过监测遥感卫星记录的热点数据集,可以对火灾事件进行预测。本研究旨在构建一个在热点数据上执行集群的web应用程序。本应用程序使用R语言的Shiny web框架实现了DBSCAN算法。在2002-2003年对加里曼丹岛和南苏门答腊省的热点数据集进行了聚类。通过聚类得到的热点分布格局可作为森林火灾发生的预测模型,并可通过internet浏览器访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hotspot clustering using DBSCAN algorithm and shiny web framework
Forest fires are a serious problem that occurs repeatedly in Indonesia. Fire events can be predicted by monitoring the datasets of hotspots which are recorded through remote sensing satellite. This study aims to build a web application that performs clustering on the hotspots data. This application implements DBSCAN algorithm using Shiny web framework for R programming language. Clustering is performed on a dataset of hotspots on Kalimantan Island and South Sumatra Province in 2002-2003. The spread pattern of hotspots resulted by this clustering can be used as a predictive model of forest fires occurence and can be accessed through the internet browser.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model prediction for accreditation of public junior high school in Bogor using spatial decision tree Campaign 2.0: Analysis of social media utilization in 2014 Jakarta legislative election Performance of robust two-dimensional principal component for classification Extending V-model practices to support SRE to build secure web application A comparison of backpropagation and LVQ: A case study of lung sound recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1