离散优化问题的问题约简图模型

Yujun Zheng, Jinyun Xue
{"title":"离散优化问题的问题约简图模型","authors":"Yujun Zheng, Jinyun Xue","doi":"10.1109/CSO.2010.202","DOIUrl":null,"url":null,"abstract":"The paper proposes the problem reduction graph (PRG), an abstract model for discrete optimization problems which uses structural decomposition to reduce problem complexity and constructs the recurrence relations between the problem and its sub problems. We develop several important algorithm patterns for PRG construction, each leading to a special class of concrete problem-solving algorithms in a systematic way. The model supports logical transformation from specifications to algorithmic programs by deductive inference, and thus significantly promotes the automation and reusability of algorithm design.","PeriodicalId":427481,"journal":{"name":"2010 Third International Joint Conference on Computational Science and Optimization","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Problem Reduction Graph Model for Discrete Optimization Problems\",\"authors\":\"Yujun Zheng, Jinyun Xue\",\"doi\":\"10.1109/CSO.2010.202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes the problem reduction graph (PRG), an abstract model for discrete optimization problems which uses structural decomposition to reduce problem complexity and constructs the recurrence relations between the problem and its sub problems. We develop several important algorithm patterns for PRG construction, each leading to a special class of concrete problem-solving algorithms in a systematic way. The model supports logical transformation from specifications to algorithmic programs by deductive inference, and thus significantly promotes the automation and reusability of algorithm design.\",\"PeriodicalId\":427481,\"journal\":{\"name\":\"2010 Third International Joint Conference on Computational Science and Optimization\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Third International Joint Conference on Computational Science and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSO.2010.202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Joint Conference on Computational Science and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2010.202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了问题约简图(PRG),它是离散优化问题的抽象模型,利用结构分解来降低问题的复杂性,并构建了问题与其子问题之间的递归关系。我们为PRG构建开发了几个重要的算法模式,每个模式都以系统的方式导致了一类特殊的具体问题解决算法。该模型支持通过演绎推理从规范到算法程序的逻辑转换,从而显著提高了算法设计的自动化和可重用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Problem Reduction Graph Model for Discrete Optimization Problems
The paper proposes the problem reduction graph (PRG), an abstract model for discrete optimization problems which uses structural decomposition to reduce problem complexity and constructs the recurrence relations between the problem and its sub problems. We develop several important algorithm patterns for PRG construction, each leading to a special class of concrete problem-solving algorithms in a systematic way. The model supports logical transformation from specifications to algorithmic programs by deductive inference, and thus significantly promotes the automation and reusability of algorithm design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing the Internal Fraud Risk of Chinese Commercial Banks A Fast Bidirectional Method for Mining Maximal Frequent Itemsets A Prediction of the Monthly Precipitation Model Based on PSO-ANN and its Applications On the Analysis of Performance of the Artificial Tribe Algorithm Analysis on the Volatility of SHIBOR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1