基于稀疏表示的小波域插值和非局部均值超分辨算法

G. Suryanarayana, R. Dhuli
{"title":"基于稀疏表示的小波域插值和非局部均值超分辨算法","authors":"G. Suryanarayana, R. Dhuli","doi":"10.11591/IJEECS.V16.I2.PP296-302","DOIUrl":null,"url":null,"abstract":"In this correspondence, we propose a novel image resolution enhancement algorithm based on discretewavelet transform (DWT), stationary wavelet transform (SWT) and sparse signal recovery of the inputimage. The nonlocal means filter is employed in the preliminary denoising stage of the proposed method.The denoised input low resolution (LR) image is then decomposed into different frequency subbands byemploying DWT and SWT simultaneously. In parallel, the denoised LR image is subjected to a sparse signalrepresentation based interpolation. All the estimated high frequency subbands as well as the sparseinterpolated LR image are fused to generate a high resolution (HR) image by using inverse discrete wavelettransform (IDWT). Experimental results on various test images show the superiority of our method over theconventional and state-of-the-art single image super- resolution (SR) techniques in achieving the real timeperformance.","PeriodicalId":247642,"journal":{"name":"TELKOMNIKA Indonesian Journal of Electrical Engineering","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sparse Representation Based Super-Resolution Algorithm using Wavelet Domain Interpolation and Nonlocal Means\",\"authors\":\"G. Suryanarayana, R. Dhuli\",\"doi\":\"10.11591/IJEECS.V16.I2.PP296-302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this correspondence, we propose a novel image resolution enhancement algorithm based on discretewavelet transform (DWT), stationary wavelet transform (SWT) and sparse signal recovery of the inputimage. The nonlocal means filter is employed in the preliminary denoising stage of the proposed method.The denoised input low resolution (LR) image is then decomposed into different frequency subbands byemploying DWT and SWT simultaneously. In parallel, the denoised LR image is subjected to a sparse signalrepresentation based interpolation. All the estimated high frequency subbands as well as the sparseinterpolated LR image are fused to generate a high resolution (HR) image by using inverse discrete wavelettransform (IDWT). Experimental results on various test images show the superiority of our method over theconventional and state-of-the-art single image super- resolution (SR) techniques in achieving the real timeperformance.\",\"PeriodicalId\":247642,\"journal\":{\"name\":\"TELKOMNIKA Indonesian Journal of Electrical Engineering\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TELKOMNIKA Indonesian Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJEECS.V16.I2.PP296-302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TELKOMNIKA Indonesian Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJEECS.V16.I2.PP296-302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种基于离散小波变换(DWT)、平稳小波变换(SWT)和输入图像稀疏信号恢复的图像分辨率增强算法。该方法的初始去噪阶段采用非局部均值滤波。然后利用小波变换和小波变换同时将去噪后的输入低分辨率图像分解为不同的频率子带。同时,降噪后的LR图像进行基于稀疏信号表示的插值。利用反离散小波变换(IDWT)将所有估计的高频子带与稀疏插值后的LR图像融合,生成高分辨率图像。在各种测试图像上的实验结果表明,我们的方法在实现实时性方面优于传统的和最先进的单图像超分辨率(SR)技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse Representation Based Super-Resolution Algorithm using Wavelet Domain Interpolation and Nonlocal Means
In this correspondence, we propose a novel image resolution enhancement algorithm based on discretewavelet transform (DWT), stationary wavelet transform (SWT) and sparse signal recovery of the inputimage. The nonlocal means filter is employed in the preliminary denoising stage of the proposed method.The denoised input low resolution (LR) image is then decomposed into different frequency subbands byemploying DWT and SWT simultaneously. In parallel, the denoised LR image is subjected to a sparse signalrepresentation based interpolation. All the estimated high frequency subbands as well as the sparseinterpolated LR image are fused to generate a high resolution (HR) image by using inverse discrete wavelettransform (IDWT). Experimental results on various test images show the superiority of our method over theconventional and state-of-the-art single image super- resolution (SR) techniques in achieving the real timeperformance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Coordination of Overcurrent and Distance Relays Using Cuckoo Optimization Algorithm Tissue-like P system based DNA-GA for clustering Layer Recurrent Neural Network based Power System Load Forecasting A New Algorithm for Protection of Small Scale Synchronous Generators Against Transient Instability Power Generation Using Speed Breakers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1