{"title":"基于稀疏表示的小波域插值和非局部均值超分辨算法","authors":"G. Suryanarayana, R. Dhuli","doi":"10.11591/IJEECS.V16.I2.PP296-302","DOIUrl":null,"url":null,"abstract":"In this correspondence, we propose a novel image resolution enhancement algorithm based on discretewavelet transform (DWT), stationary wavelet transform (SWT) and sparse signal recovery of the inputimage. The nonlocal means filter is employed in the preliminary denoising stage of the proposed method.The denoised input low resolution (LR) image is then decomposed into different frequency subbands byemploying DWT and SWT simultaneously. In parallel, the denoised LR image is subjected to a sparse signalrepresentation based interpolation. All the estimated high frequency subbands as well as the sparseinterpolated LR image are fused to generate a high resolution (HR) image by using inverse discrete wavelettransform (IDWT). Experimental results on various test images show the superiority of our method over theconventional and state-of-the-art single image super- resolution (SR) techniques in achieving the real timeperformance.","PeriodicalId":247642,"journal":{"name":"TELKOMNIKA Indonesian Journal of Electrical Engineering","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sparse Representation Based Super-Resolution Algorithm using Wavelet Domain Interpolation and Nonlocal Means\",\"authors\":\"G. Suryanarayana, R. Dhuli\",\"doi\":\"10.11591/IJEECS.V16.I2.PP296-302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this correspondence, we propose a novel image resolution enhancement algorithm based on discretewavelet transform (DWT), stationary wavelet transform (SWT) and sparse signal recovery of the inputimage. The nonlocal means filter is employed in the preliminary denoising stage of the proposed method.The denoised input low resolution (LR) image is then decomposed into different frequency subbands byemploying DWT and SWT simultaneously. In parallel, the denoised LR image is subjected to a sparse signalrepresentation based interpolation. All the estimated high frequency subbands as well as the sparseinterpolated LR image are fused to generate a high resolution (HR) image by using inverse discrete wavelettransform (IDWT). Experimental results on various test images show the superiority of our method over theconventional and state-of-the-art single image super- resolution (SR) techniques in achieving the real timeperformance.\",\"PeriodicalId\":247642,\"journal\":{\"name\":\"TELKOMNIKA Indonesian Journal of Electrical Engineering\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TELKOMNIKA Indonesian Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJEECS.V16.I2.PP296-302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TELKOMNIKA Indonesian Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJEECS.V16.I2.PP296-302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sparse Representation Based Super-Resolution Algorithm using Wavelet Domain Interpolation and Nonlocal Means
In this correspondence, we propose a novel image resolution enhancement algorithm based on discretewavelet transform (DWT), stationary wavelet transform (SWT) and sparse signal recovery of the inputimage. The nonlocal means filter is employed in the preliminary denoising stage of the proposed method.The denoised input low resolution (LR) image is then decomposed into different frequency subbands byemploying DWT and SWT simultaneously. In parallel, the denoised LR image is subjected to a sparse signalrepresentation based interpolation. All the estimated high frequency subbands as well as the sparseinterpolated LR image are fused to generate a high resolution (HR) image by using inverse discrete wavelettransform (IDWT). Experimental results on various test images show the superiority of our method over theconventional and state-of-the-art single image super- resolution (SR) techniques in achieving the real timeperformance.