应用于Rosenbrock函数的闭环梯度下降算法

Subhransu S. Bhattacharjee, I. Petersen
{"title":"应用于Rosenbrock函数的闭环梯度下降算法","authors":"Subhransu S. Bhattacharjee, I. Petersen","doi":"10.1109/ANZCC53563.2021.9628258","DOIUrl":null,"url":null,"abstract":"We introduce a novel adaptive damping technique for an inertial gradient system which finds application as a gradient descent algorithm for unconstrained optimisation. In an example using the non-convex Rosenbrock’s function, we show an improvement on existing momentum-based gradient optimisation methods. Also using Lyapunov stability analysis, we demonstrate the performance of the continuous-time version of the algorithm. Using numerical simulations, we consider the performance of its discrete-time counterpart obtained by using the symplectic Euler method of discretisation.","PeriodicalId":246687,"journal":{"name":"2021 Australian & New Zealand Control Conference (ANZCC)","volume":"117 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Closed Loop Gradient Descent Algorithm applied to Rosenbrock’s function\",\"authors\":\"Subhransu S. Bhattacharjee, I. Petersen\",\"doi\":\"10.1109/ANZCC53563.2021.9628258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel adaptive damping technique for an inertial gradient system which finds application as a gradient descent algorithm for unconstrained optimisation. In an example using the non-convex Rosenbrock’s function, we show an improvement on existing momentum-based gradient optimisation methods. Also using Lyapunov stability analysis, we demonstrate the performance of the continuous-time version of the algorithm. Using numerical simulations, we consider the performance of its discrete-time counterpart obtained by using the symplectic Euler method of discretisation.\",\"PeriodicalId\":246687,\"journal\":{\"name\":\"2021 Australian & New Zealand Control Conference (ANZCC)\",\"volume\":\"117 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Australian & New Zealand Control Conference (ANZCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANZCC53563.2021.9628258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC53563.2021.9628258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们介绍了一种新的惯性梯度系统的自适应阻尼技术,该技术可以作为无约束优化的梯度下降算法。在一个使用非凸Rosenbrock函数的例子中,我们展示了对现有基于动量的梯度优化方法的改进。同时利用李雅普诺夫稳定性分析,我们证明了该算法的连续时间版本的性能。通过数值模拟,我们考虑了用辛欧拉离散化方法得到的离散时间对应体的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Closed Loop Gradient Descent Algorithm applied to Rosenbrock’s function
We introduce a novel adaptive damping technique for an inertial gradient system which finds application as a gradient descent algorithm for unconstrained optimisation. In an example using the non-convex Rosenbrock’s function, we show an improvement on existing momentum-based gradient optimisation methods. Also using Lyapunov stability analysis, we demonstrate the performance of the continuous-time version of the algorithm. Using numerical simulations, we consider the performance of its discrete-time counterpart obtained by using the symplectic Euler method of discretisation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monitoring of Froth Flotation with Transfer Learning and Principal Component Models* Mitigating Tilt Anisoplanatism with the Slope Merging Method for Multi-Conjugate Adaptive Optics Systems Effect of increased number of COVID-19 tests using supervised machine learning models Social Shaping of Linear Quadratic Multi-Agent Systems Approximating Nonlinear Model Predictive Controllers using Support Vector Machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1