基于低质量视频的视频复原改进人脸伪造检测

Jianyang Qi, Peng Liang, Gang Hao, Yuting Wu
{"title":"基于低质量视频的视频复原改进人脸伪造检测","authors":"Jianyang Qi, Peng Liang, Gang Hao, Yuting Wu","doi":"10.1145/3457682.3457753","DOIUrl":null,"url":null,"abstract":"The face forgery detection model based on XceptionNet has made great achievements in the detection field. However, it is still a challenge to detect fake faces in low-quality video images, because the low-quality video image has an insufficient resolution, which leads to the loss of details of the video image, thus resulting in image blurring. To solve this problem, this paper proposes a low-quality video face forgery detection method based on video recovery. This method mainly uses the Pyramid, Cascading, and Deformable convolution(PCD) module and the spatiotemporal attention (TSA) fusion module to restore low-quality video face images, and then obtains the restored feature map. And then the restored feature map is fed into the Xception classification network for face forgery detection. Moreover, The pre-training model parameters based on ImageNet makes the training model converge on 2GPU days. The results show that this method has a good experimental effect on the test data set.","PeriodicalId":142045,"journal":{"name":"2021 13th International Conference on Machine Learning and Computing","volume":"8 16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Video Restoration to Improve Face Forgery Detection Based on Low-quality Video\",\"authors\":\"Jianyang Qi, Peng Liang, Gang Hao, Yuting Wu\",\"doi\":\"10.1145/3457682.3457753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The face forgery detection model based on XceptionNet has made great achievements in the detection field. However, it is still a challenge to detect fake faces in low-quality video images, because the low-quality video image has an insufficient resolution, which leads to the loss of details of the video image, thus resulting in image blurring. To solve this problem, this paper proposes a low-quality video face forgery detection method based on video recovery. This method mainly uses the Pyramid, Cascading, and Deformable convolution(PCD) module and the spatiotemporal attention (TSA) fusion module to restore low-quality video face images, and then obtains the restored feature map. And then the restored feature map is fed into the Xception classification network for face forgery detection. Moreover, The pre-training model parameters based on ImageNet makes the training model converge on 2GPU days. The results show that this method has a good experimental effect on the test data set.\",\"PeriodicalId\":142045,\"journal\":{\"name\":\"2021 13th International Conference on Machine Learning and Computing\",\"volume\":\"8 16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3457682.3457753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457682.3457753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于XceptionNet的人脸伪造检测模型在检测领域取得了很大的成就。然而,在低质量视频图像中检测假脸仍然是一个挑战,因为低质量视频图像的分辨率不足,导致视频图像的细节丢失,从而导致图像模糊。为了解决这一问题,本文提出了一种基于视频恢复的低质量视频人脸伪造检测方法。该方法主要利用金字塔级联变形卷积(Pyramid, Cascading, and Deformable convolution, PCD)模块和时空注意力(spatial - temporal attention, TSA)融合模块对低质量视频人脸图像进行恢复,然后得到恢复后的特征图。然后将恢复的特征图输入异常分类网络进行人脸伪造检测。此外,基于ImageNet的预训练模型参数使训练模型在2GPU天内收敛。结果表明,该方法在测试数据集上具有良好的实验效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Video Restoration to Improve Face Forgery Detection Based on Low-quality Video
The face forgery detection model based on XceptionNet has made great achievements in the detection field. However, it is still a challenge to detect fake faces in low-quality video images, because the low-quality video image has an insufficient resolution, which leads to the loss of details of the video image, thus resulting in image blurring. To solve this problem, this paper proposes a low-quality video face forgery detection method based on video recovery. This method mainly uses the Pyramid, Cascading, and Deformable convolution(PCD) module and the spatiotemporal attention (TSA) fusion module to restore low-quality video face images, and then obtains the restored feature map. And then the restored feature map is fed into the Xception classification network for face forgery detection. Moreover, The pre-training model parameters based on ImageNet makes the training model converge on 2GPU days. The results show that this method has a good experimental effect on the test data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corpus Construction and Entity Recognition for the Field of Industrial Robot Fault Diagnosis GCN2-NAA: Two-stage Graph Convolutional Networks with Node-Aware Attention for Joint Entity and Relation Extraction A Practical Indoor and Outdoor Seamless Navigation System Based on Electronic Map and Geomagnetism SC-DGCN: Sentiment Classification Based on Densely Connected Graph Convolutional Network Bird Songs Recognition Based on Ensemble Extreme Learning Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1