基于自适应学习反向传播神经网络的谐波电流幅值和相位确定

M. Rukonuzzaman, M. Nakaoka
{"title":"基于自适应学习反向传播神经网络的谐波电流幅值和相位确定","authors":"M. Rukonuzzaman, M. Nakaoka","doi":"10.1109/PEDS.1999.792874","DOIUrl":null,"url":null,"abstract":"Harmonic currents are significant and inevitable when power electronic installations are used in industry and telecommunication energy plants. In order to compensate the instantaneous harmonic current components by active power filtering technique, it is a prerequisite to estimate the magnitude and phase of each harmonic component in real time. In this paper, a promethean approach is proposed for the determination of magnitude and phase of each current harmonic component from the distorted line currents. This approach introduces an adaptive learning multi-layer backpropagation neural network which converges faster than simple back-propagation neural network. Unlike conventional methods of harmonic current determination, this method requires only half cycle of the distorted current waves. This method is four times faster than the conventional method and this makes the on-line determination of instantaneous harmonic components.","PeriodicalId":254764,"journal":{"name":"Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems. PEDS'99 (Cat. No.99TH8475)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Magnitude and phase determination of harmonic currents by adaptive learning back-propagation neural network\",\"authors\":\"M. Rukonuzzaman, M. Nakaoka\",\"doi\":\"10.1109/PEDS.1999.792874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Harmonic currents are significant and inevitable when power electronic installations are used in industry and telecommunication energy plants. In order to compensate the instantaneous harmonic current components by active power filtering technique, it is a prerequisite to estimate the magnitude and phase of each harmonic component in real time. In this paper, a promethean approach is proposed for the determination of magnitude and phase of each current harmonic component from the distorted line currents. This approach introduces an adaptive learning multi-layer backpropagation neural network which converges faster than simple back-propagation neural network. Unlike conventional methods of harmonic current determination, this method requires only half cycle of the distorted current waves. This method is four times faster than the conventional method and this makes the on-line determination of instantaneous harmonic components.\",\"PeriodicalId\":254764,\"journal\":{\"name\":\"Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems. PEDS'99 (Cat. No.99TH8475)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems. PEDS'99 (Cat. No.99TH8475)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDS.1999.792874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems. PEDS'99 (Cat. No.99TH8475)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDS.1999.792874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在工业和电信能源工厂中使用电力电子装置时,谐波电流是重要的和不可避免的。为了利用有源滤波技术补偿瞬时谐波电流分量,实时估计各谐波分量的幅值和相位是前提。本文提出了一种从畸变线电流中确定各电流谐波分量的幅值和相位的普罗米修斯方法。该方法引入了一种自适应学习的多层反向传播神经网络,其收敛速度比简单的反向传播神经网络快。与传统的谐波电流测定方法不同,该方法只需要畸变电流波的半个周期。该方法比传统方法快4倍,实现了瞬时谐波分量的在线测定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnitude and phase determination of harmonic currents by adaptive learning back-propagation neural network
Harmonic currents are significant and inevitable when power electronic installations are used in industry and telecommunication energy plants. In order to compensate the instantaneous harmonic current components by active power filtering technique, it is a prerequisite to estimate the magnitude and phase of each harmonic component in real time. In this paper, a promethean approach is proposed for the determination of magnitude and phase of each current harmonic component from the distorted line currents. This approach introduces an adaptive learning multi-layer backpropagation neural network which converges faster than simple back-propagation neural network. Unlike conventional methods of harmonic current determination, this method requires only half cycle of the distorted current waves. This method is four times faster than the conventional method and this makes the on-line determination of instantaneous harmonic components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic analysis of electromechanical converters by means of the wavelet transform Analysis of the snubberless operation of the emitter turn-off thyristor (ETO) Modeling and control of automotive HID lamp ballast Voltage and current hybrid controlled PWM inverters using variable structure control Development of a fuel cell power conditioner system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1