基于自适应惯性因子粒子群独立分量分析的齿轮箱弱局部故障诊断

Z. Shang, Cailu Pan, Yan Yu, Fei Liu, Maosheng Gao
{"title":"基于自适应惯性因子粒子群独立分量分析的齿轮箱弱局部故障诊断","authors":"Z. Shang, Cailu Pan, Yan Yu, Fei Liu, Maosheng Gao","doi":"10.1784/insi.2023.65.8.415","DOIUrl":null,"url":null,"abstract":"Due to the interference of surrounding noise when collecting the vibration signal of a fixed shaft gearbox, it is impossible to extract the fault features contained in the vibration signal with a high degree of accuracy and this reduces the accuracy of fault diagnosis of the gearbox.\n Aiming at this problem, this paper proposes a method for local weak fault diagnosis of gears based on improved independent component analysis (ICA). Firstly, for the shortcomings of ICA, such as high requirements for initial value selection, ease of falling into local extrema and the need\n to derive formulae in advance, this paper proposes to improve the separation performance of the algorithm by combining ICA with particle swarm optimisation (PSO). Also aiming at the shortcomings of slow convergence of PSO and decreased searchability in the later iteration, this paper proposes\n an adaptive inertia weight particle swarm optimisation (AIWPSO) algorithm by introducing the roulette idea into PSO. Then, combining ICA with AIWPSO, an independent component analysis method for adaptive inertia weight particle swarm optimisation (AIWPSO-ICA) is proposed to improve the signal\n separation performance. Finally, based on AIWPSO-ICA, a method for diagnosing weak local faults of gears is offered. The simulation signals and the real data experimental results verify the effectiveness and superiority over conventional AIWPSO-ICA.","PeriodicalId":344397,"journal":{"name":"Insight - Non-Destructive Testing and Condition Monitoring","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak Local Fault Diagnosis of Gearboxes Based on Adaptive Inertia Factor Particle Swarm Independent Component Analysis\",\"authors\":\"Z. Shang, Cailu Pan, Yan Yu, Fei Liu, Maosheng Gao\",\"doi\":\"10.1784/insi.2023.65.8.415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the interference of surrounding noise when collecting the vibration signal of a fixed shaft gearbox, it is impossible to extract the fault features contained in the vibration signal with a high degree of accuracy and this reduces the accuracy of fault diagnosis of the gearbox.\\n Aiming at this problem, this paper proposes a method for local weak fault diagnosis of gears based on improved independent component analysis (ICA). Firstly, for the shortcomings of ICA, such as high requirements for initial value selection, ease of falling into local extrema and the need\\n to derive formulae in advance, this paper proposes to improve the separation performance of the algorithm by combining ICA with particle swarm optimisation (PSO). Also aiming at the shortcomings of slow convergence of PSO and decreased searchability in the later iteration, this paper proposes\\n an adaptive inertia weight particle swarm optimisation (AIWPSO) algorithm by introducing the roulette idea into PSO. Then, combining ICA with AIWPSO, an independent component analysis method for adaptive inertia weight particle swarm optimisation (AIWPSO-ICA) is proposed to improve the signal\\n separation performance. Finally, based on AIWPSO-ICA, a method for diagnosing weak local faults of gears is offered. The simulation signals and the real data experimental results verify the effectiveness and superiority over conventional AIWPSO-ICA.\",\"PeriodicalId\":344397,\"journal\":{\"name\":\"Insight - Non-Destructive Testing and Condition Monitoring\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insight - Non-Destructive Testing and Condition Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1784/insi.2023.65.8.415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insight - Non-Destructive Testing and Condition Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1784/insi.2023.65.8.415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在对固定轴齿轮箱的振动信号进行采集时,由于周围噪声的干扰,无法较高精度地提取振动信号中包含的故障特征,降低了齿轮箱故障诊断的准确性。针对这一问题,提出了一种基于改进独立分量分析(ICA)的齿轮局部弱故障诊断方法。首先,针对ICA对初始值选择要求高、易陷入局部极值、需要提前推导公式等缺点,本文提出将ICA与粒子群优化(particle swarm optimization, PSO)相结合,提高算法的分离性能。同时,针对粒子群算法在后期迭代中收敛速度慢、可搜索性下降的缺点,将轮盘思想引入粒子群算法,提出了一种自适应惯性加权粒子群算法(AIWPSO)。然后,将ICA与AIWPSO相结合,提出了一种自适应惯性权重粒子群优化的独立分量分析方法(AIWPSO-ICA),以提高信号分离性能。最后,提出了一种基于AIWPSO-ICA的齿轮局部弱故障诊断方法。仿真信号和实际数据实验结果验证了该方法相对于传统AIWPSO-ICA的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weak Local Fault Diagnosis of Gearboxes Based on Adaptive Inertia Factor Particle Swarm Independent Component Analysis
Due to the interference of surrounding noise when collecting the vibration signal of a fixed shaft gearbox, it is impossible to extract the fault features contained in the vibration signal with a high degree of accuracy and this reduces the accuracy of fault diagnosis of the gearbox. Aiming at this problem, this paper proposes a method for local weak fault diagnosis of gears based on improved independent component analysis (ICA). Firstly, for the shortcomings of ICA, such as high requirements for initial value selection, ease of falling into local extrema and the need to derive formulae in advance, this paper proposes to improve the separation performance of the algorithm by combining ICA with particle swarm optimisation (PSO). Also aiming at the shortcomings of slow convergence of PSO and decreased searchability in the later iteration, this paper proposes an adaptive inertia weight particle swarm optimisation (AIWPSO) algorithm by introducing the roulette idea into PSO. Then, combining ICA with AIWPSO, an independent component analysis method for adaptive inertia weight particle swarm optimisation (AIWPSO-ICA) is proposed to improve the signal separation performance. Finally, based on AIWPSO-ICA, a method for diagnosing weak local faults of gears is offered. The simulation signals and the real data experimental results verify the effectiveness and superiority over conventional AIWPSO-ICA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-criterion analysis-based artificial intelligence system for condition monitoring of electrical transformers MFL detection of adjacent pipeline defects: a finite element simulation of signal characteristics A multi-frequency balanced electromagnetic field measurement for arbitrary angles of pipeline cracks with high sensitivity Ultrasonic total focusing method for internal defects in composite insulators Developments in ultrasonic and eddy current testing in the 1970s and 1980s with emphasis on the requirements of the UK nuclear power industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1