基于线性拟合残差编码的传感器节点无损压缩算法

Xuejun Ren, Zhongyuan Ren
{"title":"基于线性拟合残差编码的传感器节点无损压缩算法","authors":"Xuejun Ren, Zhongyuan Ren","doi":"10.1145/3177457.3177482","DOIUrl":null,"url":null,"abstract":"According to the theory of linear regression model, this paper designed a sensor data lossless compression algorithm. The algorithm calculates the sensor data's fitting values and fitting residuals, which are input to a content-based entropy coder to perform compression. The algorithm achieves lossless transform by rounding operation, and realizes positive sequence decoding by prediction fitting. The efficient entropy coding is realized by calculating the mean bit number of input data. Compared with the typical lossless compression algorithms, the proposed algorithm indicated better compression ratios with a small computational overhead.","PeriodicalId":297531,"journal":{"name":"Proceedings of the 10th International Conference on Computer Modeling and Simulation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Sensor Node Lossless Compression Algorithm based on Linear Fitting Residuals Coding\",\"authors\":\"Xuejun Ren, Zhongyuan Ren\",\"doi\":\"10.1145/3177457.3177482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the theory of linear regression model, this paper designed a sensor data lossless compression algorithm. The algorithm calculates the sensor data's fitting values and fitting residuals, which are input to a content-based entropy coder to perform compression. The algorithm achieves lossless transform by rounding operation, and realizes positive sequence decoding by prediction fitting. The efficient entropy coding is realized by calculating the mean bit number of input data. Compared with the typical lossless compression algorithms, the proposed algorithm indicated better compression ratios with a small computational overhead.\",\"PeriodicalId\":297531,\"journal\":{\"name\":\"Proceedings of the 10th International Conference on Computer Modeling and Simulation\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Conference on Computer Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3177457.3177482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3177457.3177482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

根据线性回归模型理论,设计了一种传感器数据无损压缩算法。该算法计算传感器数据的拟合值和拟合残差,并将其输入到基于内容的熵编码器中进行压缩。该算法通过舍入运算实现无损变换,通过预测拟合实现正序列解码。通过计算输入数据的平均比特数来实现有效的熵编码。与典型的无损压缩算法相比,该算法具有更好的压缩比和较小的计算开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Sensor Node Lossless Compression Algorithm based on Linear Fitting Residuals Coding
According to the theory of linear regression model, this paper designed a sensor data lossless compression algorithm. The algorithm calculates the sensor data's fitting values and fitting residuals, which are input to a content-based entropy coder to perform compression. The algorithm achieves lossless transform by rounding operation, and realizes positive sequence decoding by prediction fitting. The efficient entropy coding is realized by calculating the mean bit number of input data. Compared with the typical lossless compression algorithms, the proposed algorithm indicated better compression ratios with a small computational overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
rTuner: A Performance Enhancement of MapReduce Job Sensitivity Analysis of a Causality-Informed Genetic Programming Ensemble for Inferring Dynamical Systems Improving Efficiency of TV PCB Assembly Line Using a Discrete Event Simulation Approach: A Case Study Workflow for Developing High-Resolution 3D City Models in Korea Standard Values of Service Level of Intersection for Collection and Distribution Roads of Container Terminals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1