HoughNet:用于消失点检测的神经网络架构

A. Sheshkus, A. Ingacheva, V. Arlazarov, D. Nikolaev
{"title":"HoughNet:用于消失点检测的神经网络架构","authors":"A. Sheshkus, A. Ingacheva, V. Arlazarov, D. Nikolaev","doi":"10.1109/ICDAR.2019.00140","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a novel neural network architecture based on Fast Hough Transform layer. The layer of this type allows our neural network to accumulate features from linear areas across the entire image instead of local areas. We demonstrate its potential by solving the problem of vanishing points detection in the images of documents. Such problem occurs when dealing with camera shots of the documents in uncontrolled conditions. In this case, the document image can suffer several specific distortions including projective transform. To train our model, we use MIDV-500 dataset and provide testing results. Strong generalization ability of the suggested method is proven with its applying to a completely different ICDAR 2011 dewarping contest. In previously published papers considering this dataset authors measured quality of vanishing point detection by counting correctly recognized words with open OCR engine Tesseract. To compare with them, we reproduce this experiment and show that our method outperforms the state-of-the-art result.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"HoughNet: Neural Network Architecture for Vanishing Points Detection\",\"authors\":\"A. Sheshkus, A. Ingacheva, V. Arlazarov, D. Nikolaev\",\"doi\":\"10.1109/ICDAR.2019.00140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a novel neural network architecture based on Fast Hough Transform layer. The layer of this type allows our neural network to accumulate features from linear areas across the entire image instead of local areas. We demonstrate its potential by solving the problem of vanishing points detection in the images of documents. Such problem occurs when dealing with camera shots of the documents in uncontrolled conditions. In this case, the document image can suffer several specific distortions including projective transform. To train our model, we use MIDV-500 dataset and provide testing results. Strong generalization ability of the suggested method is proven with its applying to a completely different ICDAR 2011 dewarping contest. In previously published papers considering this dataset authors measured quality of vanishing point detection by counting correctly recognized words with open OCR engine Tesseract. To compare with them, we reproduce this experiment and show that our method outperforms the state-of-the-art result.\",\"PeriodicalId\":325437,\"journal\":{\"name\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2019.00140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文介绍了一种基于快速霍夫变换层的神经网络结构。这种类型的层允许我们的神经网络从整个图像的线性区域累积特征,而不是局部区域。我们通过解决文档图像中的消失点检测问题来展示其潜力。当在不受控制的条件下处理相机拍摄的文件时,就会出现这种问题。在这种情况下,文档图像可能遭受几种特定的失真,包括投影变换。为了训练我们的模型,我们使用MIDV-500数据集并提供测试结果。将该方法应用于一个完全不同的2011年ICDAR脱模比赛,证明了该方法具有较强的泛化能力。在先前发表的考虑该数据集的论文中,作者通过使用开放OCR引擎Tesseract计算正确识别的单词来测量消失点检测的质量。为了与他们进行比较,我们重现了这个实验,并表明我们的方法优于最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HoughNet: Neural Network Architecture for Vanishing Points Detection
In this paper we introduce a novel neural network architecture based on Fast Hough Transform layer. The layer of this type allows our neural network to accumulate features from linear areas across the entire image instead of local areas. We demonstrate its potential by solving the problem of vanishing points detection in the images of documents. Such problem occurs when dealing with camera shots of the documents in uncontrolled conditions. In this case, the document image can suffer several specific distortions including projective transform. To train our model, we use MIDV-500 dataset and provide testing results. Strong generalization ability of the suggested method is proven with its applying to a completely different ICDAR 2011 dewarping contest. In previously published papers considering this dataset authors measured quality of vanishing point detection by counting correctly recognized words with open OCR engine Tesseract. To compare with them, we reproduce this experiment and show that our method outperforms the state-of-the-art result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Article Segmentation in Digitised Newspapers with a 2D Markov Model ICDAR 2019 Robust Reading Challenge on Reading Chinese Text on Signboard TableNet: Deep Learning Model for End-to-end Table Detection and Tabular Data Extraction from Scanned Document Images DICE: Deep Intelligent Contextual Embedding for Twitter Sentiment Analysis Blind Source Separation Based Framework for Multispectral Document Images Binarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1