A. G. Chernyatevich, L. Molchanov, E. Sigarev, S. Dudchenko, V. V. Vakal’chuk, P. Yushkevich, K. Chubin, A. A. Pokhvalityi, E. Chubina
{"title":"在不同设计的氧枪的应用下,在浴顶吹风的转炉腔内的物理化学过程的视频配准。报告2。应用双回路喷枪时的喷浴图","authors":"A. G. Chernyatevich, L. Molchanov, E. Sigarev, S. Dudchenko, V. V. Vakal’chuk, P. Yushkevich, K. Chubin, A. A. Pokhvalityi, E. Chubina","doi":"10.32339/0135-5910-2021-9-1011-1019","DOIUrl":null,"url":null,"abstract":"To elaborate blowing and slag modes, a clear picture of BOF bath blowing in various periods of heat is needed. It can be obtained by video registration of physicochemical processes in a BOF cavity. Results of video filming of BOF bath blowing with application two-circuit oxygen lances of five designs presented. Reliable information was obtained on rational form of organization of reaction zone of interaction of ultrasonic and sonic oxygen jets with BOF bath. The picture of physicochemical processes within the reaction zone of interaction of oxygen jets with metal, slag and gas phases of the cavity, preceded to a stable “ignition” of a heat and in the process of the whole heat. A possibility was revealed to accelerate the processes of lime dissolving and slag formation and phosphor removal intensification. The intensification can be accomplished by increase of the number of reaction zones of interaction of ultrasonic and sonic oxygen jets on bath surface and forming of foamed slag-metal emulsion, being stable within the basic part of blowing time. It was shown that at initial period of a heat, it is necessary to ensure consolidation of supersonic oxygen jets, coming out of different reaction zones of interaction. It will enable to oncoming jets to create a curtain on the way of metal and slag drops taking away, to form a flare of CO afterburning to CO2 and ensure heat energy transfer from them to mainly the bath surface. It was established that at the location of the foamed slag-metal emulsion level higher the head end of the lance, the high-temperature products of CO to CO2 afterburning reaction transfer the heat of CO surrounding macro bubble to the shell of slag-metal emulsion. An additional control effect of “hard” supersonic oxygen jets on the bath was also established when replacing the subsonic and sonic oxygen jets by nitrogen ones. At that the flow rate of nitrogen should be big enough to prevent the sealing of cylinder nozzles of the lance head by metal and slag drops during final stage of blowing. The variant of the final stage of blowing was checked experimentally by transfer to the “hard” supersonic oxygen blow, contributing to final metal and slag oxidation decrease.","PeriodicalId":259995,"journal":{"name":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Video registration of physicochemical processes in BOF cavity at bath top blowing at application oxygen lances of various designs. Report 2. The picture of bath blowing at application two-circuit lances\",\"authors\":\"A. G. Chernyatevich, L. Molchanov, E. Sigarev, S. Dudchenko, V. V. Vakal’chuk, P. Yushkevich, K. Chubin, A. A. Pokhvalityi, E. Chubina\",\"doi\":\"10.32339/0135-5910-2021-9-1011-1019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To elaborate blowing and slag modes, a clear picture of BOF bath blowing in various periods of heat is needed. It can be obtained by video registration of physicochemical processes in a BOF cavity. Results of video filming of BOF bath blowing with application two-circuit oxygen lances of five designs presented. Reliable information was obtained on rational form of organization of reaction zone of interaction of ultrasonic and sonic oxygen jets with BOF bath. The picture of physicochemical processes within the reaction zone of interaction of oxygen jets with metal, slag and gas phases of the cavity, preceded to a stable “ignition” of a heat and in the process of the whole heat. A possibility was revealed to accelerate the processes of lime dissolving and slag formation and phosphor removal intensification. The intensification can be accomplished by increase of the number of reaction zones of interaction of ultrasonic and sonic oxygen jets on bath surface and forming of foamed slag-metal emulsion, being stable within the basic part of blowing time. It was shown that at initial period of a heat, it is necessary to ensure consolidation of supersonic oxygen jets, coming out of different reaction zones of interaction. It will enable to oncoming jets to create a curtain on the way of metal and slag drops taking away, to form a flare of CO afterburning to CO2 and ensure heat energy transfer from them to mainly the bath surface. It was established that at the location of the foamed slag-metal emulsion level higher the head end of the lance, the high-temperature products of CO to CO2 afterburning reaction transfer the heat of CO surrounding macro bubble to the shell of slag-metal emulsion. An additional control effect of “hard” supersonic oxygen jets on the bath was also established when replacing the subsonic and sonic oxygen jets by nitrogen ones. At that the flow rate of nitrogen should be big enough to prevent the sealing of cylinder nozzles of the lance head by metal and slag drops during final stage of blowing. The variant of the final stage of blowing was checked experimentally by transfer to the “hard” supersonic oxygen blow, contributing to final metal and slag oxidation decrease.\",\"PeriodicalId\":259995,\"journal\":{\"name\":\"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32339/0135-5910-2021-9-1011-1019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32339/0135-5910-2021-9-1011-1019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Video registration of physicochemical processes in BOF cavity at bath top blowing at application oxygen lances of various designs. Report 2. The picture of bath blowing at application two-circuit lances
To elaborate blowing and slag modes, a clear picture of BOF bath blowing in various periods of heat is needed. It can be obtained by video registration of physicochemical processes in a BOF cavity. Results of video filming of BOF bath blowing with application two-circuit oxygen lances of five designs presented. Reliable information was obtained on rational form of organization of reaction zone of interaction of ultrasonic and sonic oxygen jets with BOF bath. The picture of physicochemical processes within the reaction zone of interaction of oxygen jets with metal, slag and gas phases of the cavity, preceded to a stable “ignition” of a heat and in the process of the whole heat. A possibility was revealed to accelerate the processes of lime dissolving and slag formation and phosphor removal intensification. The intensification can be accomplished by increase of the number of reaction zones of interaction of ultrasonic and sonic oxygen jets on bath surface and forming of foamed slag-metal emulsion, being stable within the basic part of blowing time. It was shown that at initial period of a heat, it is necessary to ensure consolidation of supersonic oxygen jets, coming out of different reaction zones of interaction. It will enable to oncoming jets to create a curtain on the way of metal and slag drops taking away, to form a flare of CO afterburning to CO2 and ensure heat energy transfer from them to mainly the bath surface. It was established that at the location of the foamed slag-metal emulsion level higher the head end of the lance, the high-temperature products of CO to CO2 afterburning reaction transfer the heat of CO surrounding macro bubble to the shell of slag-metal emulsion. An additional control effect of “hard” supersonic oxygen jets on the bath was also established when replacing the subsonic and sonic oxygen jets by nitrogen ones. At that the flow rate of nitrogen should be big enough to prevent the sealing of cylinder nozzles of the lance head by metal and slag drops during final stage of blowing. The variant of the final stage of blowing was checked experimentally by transfer to the “hard” supersonic oxygen blow, contributing to final metal and slag oxidation decrease.