Pascal Gohl, M. Burri, Sammy Omari, J. Rehder, J. Nikolic, Markus Achtelik, R. Siegwart
{"title":"走向矿山自主检测","authors":"Pascal Gohl, M. Burri, Sammy Omari, J. Rehder, J. Nikolic, Markus Achtelik, R. Siegwart","doi":"10.1109/CARPI.2014.7030057","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to evaluate the use of a micro aerial vehicle (MAV) for autonomous inspection and 3D reconstruction of underground mines. The goal is to manually fly an MAV equipped with cameras and a laser range sensor into a vertical shaft to collect data. This data can be used to evaluate the performance of the localization system as well as post processed to reconstruct a 3D model of the shaft. Due to its novelty of flying an MAV in a deep mine, we report gained experience of the effect of the hot, wet and dusty environment on the system as well as the influence of turbulences from vertical winds on the flight performance. Further we evaluated the quality of the recorded data and there applicability for a fully autonomous mine inspection system.","PeriodicalId":346429,"journal":{"name":"Proceedings of the 2014 3rd International Conference on Applied Robotics for the Power Industry","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Towards autonomous mine inspection\",\"authors\":\"Pascal Gohl, M. Burri, Sammy Omari, J. Rehder, J. Nikolic, Markus Achtelik, R. Siegwart\",\"doi\":\"10.1109/CARPI.2014.7030057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to evaluate the use of a micro aerial vehicle (MAV) for autonomous inspection and 3D reconstruction of underground mines. The goal is to manually fly an MAV equipped with cameras and a laser range sensor into a vertical shaft to collect data. This data can be used to evaluate the performance of the localization system as well as post processed to reconstruct a 3D model of the shaft. Due to its novelty of flying an MAV in a deep mine, we report gained experience of the effect of the hot, wet and dusty environment on the system as well as the influence of turbulences from vertical winds on the flight performance. Further we evaluated the quality of the recorded data and there applicability for a fully autonomous mine inspection system.\",\"PeriodicalId\":346429,\"journal\":{\"name\":\"Proceedings of the 2014 3rd International Conference on Applied Robotics for the Power Industry\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 3rd International Conference on Applied Robotics for the Power Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CARPI.2014.7030057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 3rd International Conference on Applied Robotics for the Power Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CARPI.2014.7030057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The purpose of this paper is to evaluate the use of a micro aerial vehicle (MAV) for autonomous inspection and 3D reconstruction of underground mines. The goal is to manually fly an MAV equipped with cameras and a laser range sensor into a vertical shaft to collect data. This data can be used to evaluate the performance of the localization system as well as post processed to reconstruct a 3D model of the shaft. Due to its novelty of flying an MAV in a deep mine, we report gained experience of the effect of the hot, wet and dusty environment on the system as well as the influence of turbulences from vertical winds on the flight performance. Further we evaluated the quality of the recorded data and there applicability for a fully autonomous mine inspection system.