T. Esram, P. Krein, Brian T. Kuhn, Robert S. Balog, Patrick L. Chapman
{"title":"实现电网平价太阳能成本的电力电子需求","authors":"T. Esram, P. Krein, Brian T. Kuhn, Robert S. Balog, Patrick L. Chapman","doi":"10.1109/ENERGY.2008.4781075","DOIUrl":null,"url":null,"abstract":"Grid parity in the context of solar energy implies that photovoltaic resources become competitive with more conventional electrical resources. The paper explores various concepts of grid parity, with emphasis on power electronics aspects. The published Department of Energy goal of grid parity by 2015 implies large-scale shifts to solar energy by 2030. It IS shown that the power electronics subsystems of solar energy systems require substantial cost and reliability improvements to support grid parity. Inverters need to match the typical 25-year life of solar panels, support major simplifications to installation, and achieve lower manufacturing costs.","PeriodicalId":240093,"journal":{"name":"2008 IEEE Energy 2030 Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Power Electronics Needs for Achieving Grid-Parity Solar Energy Costs\",\"authors\":\"T. Esram, P. Krein, Brian T. Kuhn, Robert S. Balog, Patrick L. Chapman\",\"doi\":\"10.1109/ENERGY.2008.4781075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grid parity in the context of solar energy implies that photovoltaic resources become competitive with more conventional electrical resources. The paper explores various concepts of grid parity, with emphasis on power electronics aspects. The published Department of Energy goal of grid parity by 2015 implies large-scale shifts to solar energy by 2030. It IS shown that the power electronics subsystems of solar energy systems require substantial cost and reliability improvements to support grid parity. Inverters need to match the typical 25-year life of solar panels, support major simplifications to installation, and achieve lower manufacturing costs.\",\"PeriodicalId\":240093,\"journal\":{\"name\":\"2008 IEEE Energy 2030 Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Energy 2030 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ENERGY.2008.4781075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Energy 2030 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENERGY.2008.4781075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power Electronics Needs for Achieving Grid-Parity Solar Energy Costs
Grid parity in the context of solar energy implies that photovoltaic resources become competitive with more conventional electrical resources. The paper explores various concepts of grid parity, with emphasis on power electronics aspects. The published Department of Energy goal of grid parity by 2015 implies large-scale shifts to solar energy by 2030. It IS shown that the power electronics subsystems of solar energy systems require substantial cost and reliability improvements to support grid parity. Inverters need to match the typical 25-year life of solar panels, support major simplifications to installation, and achieve lower manufacturing costs.