A. Hendrawan, R. Gernowo, O. Nurhayati, B. Warsito, Adi Wibowo
{"title":"基于瓶颈csp的YoloV5改进目标检测算法","authors":"A. Hendrawan, R. Gernowo, O. Nurhayati, B. Warsito, Adi Wibowo","doi":"10.1109/COMNETSAT56033.2022.9994461","DOIUrl":null,"url":null,"abstract":"Detecting objects using deep learning technology has the advantage of getting good accuracy. The accuracy obtained depends on the processing time of using deep learning technology. One object detection algorithm is called You Only Look Once (YOLO), which currently has its fifth version or Yolov5. This paper proposes the real-time object detection algorithm with a video dataset recorded on the highway using Yolov5. The increase of YOLOv5 started by adding augmentation data mosaic by the size of 480x480. We practiced the YOLOV5 - BottleNeckCSP model to detect objects and then got the object information divided into six classes. The results of using mosaic data augmentation are mAP@0.5 of 0.984, mAP@0.5-0.95 of 0.696 by the precision value of 0.95, and a recall value of 0.98. Our research framework can be applied effectively to improve the performance of object detection algorithms.","PeriodicalId":221444,"journal":{"name":"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improvement Object Detection Algorithm Based on YoloV5 with BottleneckCSP\",\"authors\":\"A. Hendrawan, R. Gernowo, O. Nurhayati, B. Warsito, Adi Wibowo\",\"doi\":\"10.1109/COMNETSAT56033.2022.9994461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting objects using deep learning technology has the advantage of getting good accuracy. The accuracy obtained depends on the processing time of using deep learning technology. One object detection algorithm is called You Only Look Once (YOLO), which currently has its fifth version or Yolov5. This paper proposes the real-time object detection algorithm with a video dataset recorded on the highway using Yolov5. The increase of YOLOv5 started by adding augmentation data mosaic by the size of 480x480. We practiced the YOLOV5 - BottleNeckCSP model to detect objects and then got the object information divided into six classes. The results of using mosaic data augmentation are mAP@0.5 of 0.984, mAP@0.5-0.95 of 0.696 by the precision value of 0.95, and a recall value of 0.98. Our research framework can be applied effectively to improve the performance of object detection algorithms.\",\"PeriodicalId\":221444,\"journal\":{\"name\":\"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMNETSAT56033.2022.9994461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMNETSAT56033.2022.9994461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
利用深度学习技术检测物体具有精度高的优点。所获得的精度取决于使用深度学习技术的处理时间。一种被称为You Only Look Once (YOLO)的目标检测算法,目前已经有了第五个版本,即Yolov5。本文利用Yolov5软件,提出了一种基于高速公路视频数据集的实时目标检测算法。YOLOv5的增加是从增加480 × 480大小的增强数据马赛克开始的。我们运用YOLOV5 - BottleNeckCSP模型对目标进行检测,并将目标信息划分为6类。采用马赛克数据增强的结果为mAP@0.5 = 0.984, mAP@0.5-0.95 = 0.696,精度值为0.95,召回率为0.98。我们的研究框架可以有效地应用于提高目标检测算法的性能。
Improvement Object Detection Algorithm Based on YoloV5 with BottleneckCSP
Detecting objects using deep learning technology has the advantage of getting good accuracy. The accuracy obtained depends on the processing time of using deep learning technology. One object detection algorithm is called You Only Look Once (YOLO), which currently has its fifth version or Yolov5. This paper proposes the real-time object detection algorithm with a video dataset recorded on the highway using Yolov5. The increase of YOLOv5 started by adding augmentation data mosaic by the size of 480x480. We practiced the YOLOV5 - BottleNeckCSP model to detect objects and then got the object information divided into six classes. The results of using mosaic data augmentation are mAP@0.5 of 0.984, mAP@0.5-0.95 of 0.696 by the precision value of 0.95, and a recall value of 0.98. Our research framework can be applied effectively to improve the performance of object detection algorithms.