一种改进的支持向量机核医学图像检索系统

M. S. Kumar, Y. S. Kumaraswamy
{"title":"一种改进的支持向量机核医学图像检索系统","authors":"M. S. Kumar, Y. S. Kumaraswamy","doi":"10.1109/ICPRIME.2012.6208354","DOIUrl":null,"url":null,"abstract":"Digital medical images take up most of the storage space in the medical database. Digital images are in the form of X-Rays, MRI, CT. These medical images are extensively used in diagnosis and planning treatment schedule. Retrieving required medical images from the database in an efficient manner for diagnosis, research and educational purposes is essential. Image retrieval systems are used to retrieve similar images from database by inputting a query image. Image retrieval systems extract features in the image to a feature vector and use similarity measures for retrieval of images from the database. So the efficiency of the image retrieval system depends upon the feature selection and its classification. In this paper, it is proposed to implement a novel feature selection mechanism using Discrete Sine Transforms (DST) with Information Gain for feature reduction. Classification results obtained from existing Support Vector Machine (SVM) is compared with the proposed Support Vector Machine model. Results obtained show that the proposed SVM classifier outperforms conventional SVM classifier and multi layer perceptron neural network.","PeriodicalId":148511,"journal":{"name":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An improved support vector machine kernel for medical image retrieval system\",\"authors\":\"M. S. Kumar, Y. S. Kumaraswamy\",\"doi\":\"10.1109/ICPRIME.2012.6208354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital medical images take up most of the storage space in the medical database. Digital images are in the form of X-Rays, MRI, CT. These medical images are extensively used in diagnosis and planning treatment schedule. Retrieving required medical images from the database in an efficient manner for diagnosis, research and educational purposes is essential. Image retrieval systems are used to retrieve similar images from database by inputting a query image. Image retrieval systems extract features in the image to a feature vector and use similarity measures for retrieval of images from the database. So the efficiency of the image retrieval system depends upon the feature selection and its classification. In this paper, it is proposed to implement a novel feature selection mechanism using Discrete Sine Transforms (DST) with Information Gain for feature reduction. Classification results obtained from existing Support Vector Machine (SVM) is compared with the proposed Support Vector Machine model. Results obtained show that the proposed SVM classifier outperforms conventional SVM classifier and multi layer perceptron neural network.\",\"PeriodicalId\":148511,\"journal\":{\"name\":\"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPRIME.2012.6208354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRIME.2012.6208354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

数字医学图像占用了医学数据库的大部分存储空间。数字图像以x光、核磁共振、CT的形式出现。这些医学图像广泛用于诊断和制定治疗方案。以有效的方式从数据库中检索诊断、研究和教育目的所需的医学图像是必不可少的。图像检索系统是通过输入查询图像从数据库中检索相似图像的系统。图像检索系统将图像中的特征提取到特征向量中,并使用相似度量从数据库中检索图像。因此,图像检索系统的效率取决于特征的选择和分类。本文提出了一种新的特征选择机制,利用带有信息增益的离散正弦变换(DST)进行特征约简。将现有支持向量机(SVM)的分类结果与提出的支持向量机模型进行了比较。结果表明,所提SVM分类器优于传统SVM分类器和多层感知器神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved support vector machine kernel for medical image retrieval system
Digital medical images take up most of the storage space in the medical database. Digital images are in the form of X-Rays, MRI, CT. These medical images are extensively used in diagnosis and planning treatment schedule. Retrieving required medical images from the database in an efficient manner for diagnosis, research and educational purposes is essential. Image retrieval systems are used to retrieve similar images from database by inputting a query image. Image retrieval systems extract features in the image to a feature vector and use similarity measures for retrieval of images from the database. So the efficiency of the image retrieval system depends upon the feature selection and its classification. In this paper, it is proposed to implement a novel feature selection mechanism using Discrete Sine Transforms (DST) with Information Gain for feature reduction. Classification results obtained from existing Support Vector Machine (SVM) is compared with the proposed Support Vector Machine model. Results obtained show that the proposed SVM classifier outperforms conventional SVM classifier and multi layer perceptron neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An optimized cluster based approach for multi-source multicast routing protocol in mobile ad hoc networks with differential evolution Increasing cluster uniqueness in Fuzzy C-Means through affinity measure Rule extraction from neural networks — A comparative study Text extraction from digital English comic image using two blobs extraction method A novel approach for Kannada text extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1