eda中模型学习的复杂性:多结构问题

Hadi Sharifi, Amin Nikanjam, Hossein Karshenas, Negar Najimi
{"title":"eda中模型学习的复杂性:多结构问题","authors":"Hadi Sharifi, Amin Nikanjam, Hossein Karshenas, Negar Najimi","doi":"10.1145/2598394.2598479","DOIUrl":null,"url":null,"abstract":"Many of the real-world problems can be decomposed into a number of sub-problems for which the solutions can be found easier. However, proper decomposition of large problems remains a challenging issue, especially in optimization, where we need to find the optimal solutions more efficiently. Estimation of distribution algorithms (EDAs) are a class of evolutionary optimization algorithms that try to capture the interactions between problem variables when learning a probabilistic model from the population of candidate solutions. In this paper, we propose a type of synthesized problems, specially designed to challenge this specific ability of EDAs. They are based on the principal idea that each candidate solution to a problem may be simultaneously interpreted by two or more different structures where only one is true, resulting in the best solution to that problem. Of course, some of these structures may be more likely according to the statistics collected from the population of candidate solutions, but may not necessarily lead to the best solution. The experimental results show that the proposed benchmarks are indeed difficult for EDAs even when they use expressive models such as Bayesian networks to capture the interactions in the problem.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Complexity of model learning in EDAs: multi-structure problems\",\"authors\":\"Hadi Sharifi, Amin Nikanjam, Hossein Karshenas, Negar Najimi\",\"doi\":\"10.1145/2598394.2598479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many of the real-world problems can be decomposed into a number of sub-problems for which the solutions can be found easier. However, proper decomposition of large problems remains a challenging issue, especially in optimization, where we need to find the optimal solutions more efficiently. Estimation of distribution algorithms (EDAs) are a class of evolutionary optimization algorithms that try to capture the interactions between problem variables when learning a probabilistic model from the population of candidate solutions. In this paper, we propose a type of synthesized problems, specially designed to challenge this specific ability of EDAs. They are based on the principal idea that each candidate solution to a problem may be simultaneously interpreted by two or more different structures where only one is true, resulting in the best solution to that problem. Of course, some of these structures may be more likely according to the statistics collected from the population of candidate solutions, but may not necessarily lead to the best solution. The experimental results show that the proposed benchmarks are indeed difficult for EDAs even when they use expressive models such as Bayesian networks to capture the interactions in the problem.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2598479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2598479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

许多现实世界的问题可以分解成许多子问题,这些子问题的解决方案更容易找到。然而,对大问题的适当分解仍然是一个具有挑战性的问题,特别是在优化中,我们需要更有效地找到最优解。分布估计算法(EDAs)是一类进化优化算法,当从候选解的总体中学习概率模型时,试图捕获问题变量之间的相互作用。在本文中,我们提出了一类综合问题,专门设计来挑战eda的这种特殊能力。它们的主要思想是,一个问题的每个候选解决方案可以同时被两个或多个不同的结构解释,其中只有一个是正确的,从而产生该问题的最佳解决方案。当然,根据从候选解决方案的总体中收集的统计数据,其中一些结构可能更有可能,但不一定会导致最佳解决方案。实验结果表明,即使使用贝叶斯网络等表达模型来捕获问题中的交互,所提出的基准对eda来说确实是困难的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Complexity of model learning in EDAs: multi-structure problems
Many of the real-world problems can be decomposed into a number of sub-problems for which the solutions can be found easier. However, proper decomposition of large problems remains a challenging issue, especially in optimization, where we need to find the optimal solutions more efficiently. Estimation of distribution algorithms (EDAs) are a class of evolutionary optimization algorithms that try to capture the interactions between problem variables when learning a probabilistic model from the population of candidate solutions. In this paper, we propose a type of synthesized problems, specially designed to challenge this specific ability of EDAs. They are based on the principal idea that each candidate solution to a problem may be simultaneously interpreted by two or more different structures where only one is true, resulting in the best solution to that problem. Of course, some of these structures may be more likely according to the statistics collected from the population of candidate solutions, but may not necessarily lead to the best solution. The experimental results show that the proposed benchmarks are indeed difficult for EDAs even when they use expressive models such as Bayesian networks to capture the interactions in the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary synthesis of dynamical systems: the past, current, and future Incremental evolution of HERCL programs for robust control Selecting evolutionary operators using reinforcement learning: initial explorations Flood evolution: changing the evolutionary substrate from a path of stepping stones to a field of rocks Artificial immune systems for optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1