利用背景减法技术自动定位高光谱图像中的roi

Munir Shah, V. Cave, Marlon dos Reis
{"title":"利用背景减法技术自动定位高光谱图像中的roi","authors":"Munir Shah, V. Cave, Marlon dos Reis","doi":"10.1109/IVCNZ51579.2020.9290728","DOIUrl":null,"url":null,"abstract":"The use of snapshot hyperspectral cameras is becoming increasingly popular in agricultural scientific studies. One of the key steps in processing experimental hyperspectral data is to precisely locate the sample material under study and separate it from other background material, such as sampling instruments or equipment. This is very laborious work, especially for hyperspectral imaging scenarios where there might be a few hundred spectral images per sample. In this paper we propose a multiple-background modelling approach for automatically localising the Regions of Interest (ROIs) in hyperspectral images. The two key components of this method are i) modelling each spectral band individually and ii) applying a consensus algorithm to obtain the final ROIs for the whole hyperspectral image. Our proposed approach is able to achieve approximately a 14% improvement in ROIs detection in hyperspectral images compared to traditional video background modelling techniques.","PeriodicalId":164317,"journal":{"name":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","volume":"117 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatically localising ROIs in hyperspectral images using background subtraction techniques\",\"authors\":\"Munir Shah, V. Cave, Marlon dos Reis\",\"doi\":\"10.1109/IVCNZ51579.2020.9290728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of snapshot hyperspectral cameras is becoming increasingly popular in agricultural scientific studies. One of the key steps in processing experimental hyperspectral data is to precisely locate the sample material under study and separate it from other background material, such as sampling instruments or equipment. This is very laborious work, especially for hyperspectral imaging scenarios where there might be a few hundred spectral images per sample. In this paper we propose a multiple-background modelling approach for automatically localising the Regions of Interest (ROIs) in hyperspectral images. The two key components of this method are i) modelling each spectral band individually and ii) applying a consensus algorithm to obtain the final ROIs for the whole hyperspectral image. Our proposed approach is able to achieve approximately a 14% improvement in ROIs detection in hyperspectral images compared to traditional video background modelling techniques.\",\"PeriodicalId\":164317,\"journal\":{\"name\":\"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)\",\"volume\":\"117 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVCNZ51579.2020.9290728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVCNZ51579.2020.9290728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

快照式高光谱相机在农业科学研究中的应用越来越广泛。处理实验高光谱数据的关键步骤之一是精确定位所研究的样品材料,并将其与其他背景材料(如采样仪器或设备)分离开来。这是一项非常费力的工作,特别是对于每个样本可能有几百张光谱图像的高光谱成像场景。本文提出了一种多背景建模方法来自动定位高光谱图像中的感兴趣区域(roi)。该方法的两个关键组成部分是:1)对每个光谱波段单独建模;2)应用一致性算法获得整个高光谱图像的最终roi。与传统的视频背景建模技术相比,我们提出的方法能够在高光谱图像中实现大约14%的roi检测改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatically localising ROIs in hyperspectral images using background subtraction techniques
The use of snapshot hyperspectral cameras is becoming increasingly popular in agricultural scientific studies. One of the key steps in processing experimental hyperspectral data is to precisely locate the sample material under study and separate it from other background material, such as sampling instruments or equipment. This is very laborious work, especially for hyperspectral imaging scenarios where there might be a few hundred spectral images per sample. In this paper we propose a multiple-background modelling approach for automatically localising the Regions of Interest (ROIs) in hyperspectral images. The two key components of this method are i) modelling each spectral band individually and ii) applying a consensus algorithm to obtain the final ROIs for the whole hyperspectral image. Our proposed approach is able to achieve approximately a 14% improvement in ROIs detection in hyperspectral images compared to traditional video background modelling techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image and Text fusion for UPMC Food-101 using BERT and CNNs Predicting Cherry Quality Using Siamese Networks Wavelet Based Thresholding for Fourier Ptychography Microscopy Improving the Efficient Neural Architecture Search via Rewarding Modifications A fair comparison of the EEG signal classification methods for alcoholic subject identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1