用机器学习分析智能电表数据对居民的影响

Ali Emrouznejad, Vishal Panchmatia, Roya Gholami, Carolee Rigsbee, Hasan B. Kartal
{"title":"用机器学习分析智能电表数据对居民的影响","authors":"Ali Emrouznejad, Vishal Panchmatia, Roya Gholami, Carolee Rigsbee, Hasan B. Kartal","doi":"10.4018/ijupsc.318337","DOIUrl":null,"url":null,"abstract":"Previous studies examining the electricity consumption behavior using traditional research methods, before the smart-meter era, mostly worked on fewer variables, and the practical implications of the findings were predominantly tailored towards suppliers and businesses rather than residents. This study first provides an overview of prior research findings on electric energy use patterns and their predictors in the pre and post smart-meter era, honing in on machine learning techniques for the latter. It then addresses identified gaps in the literature by: 1) analyzing a highly detailed dataset containing a variety of variables on the physical, demographic, and socioeconomic characteristics of households using unsupervised machine learning algorithms, including feature selection and cluster analysis; and 2) examining the environmental attitude of high consumption and low consumption clusters to generate practical implications for residents.","PeriodicalId":302697,"journal":{"name":"International Journal of Urban Planning and Smart Cities","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Smart Meter Data With Machine Learning for Implications Targeted Towards Residents\",\"authors\":\"Ali Emrouznejad, Vishal Panchmatia, Roya Gholami, Carolee Rigsbee, Hasan B. Kartal\",\"doi\":\"10.4018/ijupsc.318337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous studies examining the electricity consumption behavior using traditional research methods, before the smart-meter era, mostly worked on fewer variables, and the practical implications of the findings were predominantly tailored towards suppliers and businesses rather than residents. This study first provides an overview of prior research findings on electric energy use patterns and their predictors in the pre and post smart-meter era, honing in on machine learning techniques for the latter. It then addresses identified gaps in the literature by: 1) analyzing a highly detailed dataset containing a variety of variables on the physical, demographic, and socioeconomic characteristics of households using unsupervised machine learning algorithms, including feature selection and cluster analysis; and 2) examining the environmental attitude of high consumption and low consumption clusters to generate practical implications for residents.\",\"PeriodicalId\":302697,\"journal\":{\"name\":\"International Journal of Urban Planning and Smart Cities\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Urban Planning and Smart Cities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijupsc.318337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Urban Planning and Smart Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijupsc.318337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在智能电表时代之前,以前的研究使用传统的研究方法来研究电力消费行为,主要研究较少的变量,而且研究结果的实际含义主要针对供应商和企业,而不是居民。本研究首先概述了智能电表时代前后的电能使用模式及其预测因素的先前研究结果,并重点介绍了智能电表时代的机器学习技术。然后,它通过以下方式解决了文献中发现的差距:1)使用无监督机器学习算法(包括特征选择和聚类分析)分析了一个非常详细的数据集,该数据集包含家庭的物理、人口统计学和社会经济特征的各种变量;2)研究高消费和低消费集群的环境态度,为居民提供实践启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Smart Meter Data With Machine Learning for Implications Targeted Towards Residents
Previous studies examining the electricity consumption behavior using traditional research methods, before the smart-meter era, mostly worked on fewer variables, and the practical implications of the findings were predominantly tailored towards suppliers and businesses rather than residents. This study first provides an overview of prior research findings on electric energy use patterns and their predictors in the pre and post smart-meter era, honing in on machine learning techniques for the latter. It then addresses identified gaps in the literature by: 1) analyzing a highly detailed dataset containing a variety of variables on the physical, demographic, and socioeconomic characteristics of households using unsupervised machine learning algorithms, including feature selection and cluster analysis; and 2) examining the environmental attitude of high consumption and low consumption clusters to generate practical implications for residents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Smart Meter Data With Machine Learning for Implications Targeted Towards Residents Drivers of Unfettered Urban Sprawl in Pakistan From "Set Plan" to "Horizon Europe" Neighbourhood Social Sustainability, Urban Renewal and Health Inequalities A Systematic Text-Analytics-Based Meta-Synthesis Approach for Smart Urban Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1