基于机器学习的多抽象层检测在寄存器传输层插入的硬件木马

Hau Sim Choo, C. Y. Ooi, M. Inoue, N. Ismail, M. Moghbel, Sreedharan Baskara Dass, Chee Hoo Kok, F. Hussin
{"title":"基于机器学习的多抽象层检测在寄存器传输层插入的硬件木马","authors":"Hau Sim Choo, C. Y. Ooi, M. Inoue, N. Ismail, M. Moghbel, Sreedharan Baskara Dass, Chee Hoo Kok, F. Hussin","doi":"10.1109/ATS47505.2019.00018","DOIUrl":null,"url":null,"abstract":"Hardware Trojan refers to a malicious modification of an integrated circuit (IC). To eliminate the complications arising from designing an IC which includes a Trojan, it is suggested to apply Trojan detection as early as at register-transfer level (RTL). In this paper, we propose a hardware Trojan detection framework which consists of both RTL and gate-level classification using machine learning approaches to detect hardware Trojan inserted at RTL. In the experiment, all Trojan benchmarks were successfully identified without false positive detection on non-Trojan benchmark.","PeriodicalId":258824,"journal":{"name":"2019 IEEE 28th Asian Test Symposium (ATS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Machine-Learning-Based Multiple Abstraction-Level Detection of Hardware Trojan Inserted at Register-Transfer Level\",\"authors\":\"Hau Sim Choo, C. Y. Ooi, M. Inoue, N. Ismail, M. Moghbel, Sreedharan Baskara Dass, Chee Hoo Kok, F. Hussin\",\"doi\":\"10.1109/ATS47505.2019.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hardware Trojan refers to a malicious modification of an integrated circuit (IC). To eliminate the complications arising from designing an IC which includes a Trojan, it is suggested to apply Trojan detection as early as at register-transfer level (RTL). In this paper, we propose a hardware Trojan detection framework which consists of both RTL and gate-level classification using machine learning approaches to detect hardware Trojan inserted at RTL. In the experiment, all Trojan benchmarks were successfully identified without false positive detection on non-Trojan benchmark.\",\"PeriodicalId\":258824,\"journal\":{\"name\":\"2019 IEEE 28th Asian Test Symposium (ATS)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 28th Asian Test Symposium (ATS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATS47505.2019.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 28th Asian Test Symposium (ATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS47505.2019.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

硬件木马是指对集成电路进行恶意修改。为了消除设计包含木马的集成电路所引起的复杂性,建议早在寄存器传输级(RTL)应用木马检测。在本文中,我们提出了一个硬件木马检测框架,该框架由RTL和门级分类组成,使用机器学习方法检测在RTL插入的硬件木马。在实验中,所有木马基准测试都被成功识别,而非木马基准测试没有出现误报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine-Learning-Based Multiple Abstraction-Level Detection of Hardware Trojan Inserted at Register-Transfer Level
Hardware Trojan refers to a malicious modification of an integrated circuit (IC). To eliminate the complications arising from designing an IC which includes a Trojan, it is suggested to apply Trojan detection as early as at register-transfer level (RTL). In this paper, we propose a hardware Trojan detection framework which consists of both RTL and gate-level classification using machine learning approaches to detect hardware Trojan inserted at RTL. In the experiment, all Trojan benchmarks were successfully identified without false positive detection on non-Trojan benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Iterative Parallel Test to Detect and Diagnose Multiple Defects for Digital Microfluidic Biochip Recruiting Fault Tolerance Techniques for Microprocessor Security Can Monitoring System State + Counting Custom Instruction Sequences Aid Malware Detection? Design of a Sextuple Cross-Coupled SRAM Cell with Optimized Access Operations for Highly Reliable Terrestrial Applications ATS 2019 Sponsors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1