基于传递集成深度强化学习方法的滚动轴承故障诊断

Zhenning Li, Hongkai Jiang, Shaowei Liu, Ruixin Wang
{"title":"基于传递集成深度强化学习方法的滚动轴承故障诊断","authors":"Zhenning Li, Hongkai Jiang, Shaowei Liu, Ruixin Wang","doi":"10.1109/ICPHM57936.2023.10194014","DOIUrl":null,"url":null,"abstract":"The reliable operation of rolling bearings is related to machinery safety. However, fault signals encountered in practical engineering applications are often characterized by high-dimensionality, complexity, and volume, which restricts the application of deep neural networks in fault diagnosis. Additionally, conventional diagnostic methods are limited by their reliance on manual feature extraction and a significant quantity of labeled samples, which can be time-consuming and resource-intensive. To address these limitations and improve the performance of fault diagnosis in the absence of labeled samples, an intelligent diagnostic agent (TERL-Agent) that combines transfer learning, ensemble learning and reinforcement learning is proposed. Firstly, an intelligent diagnostic agent is constructed by ensemble learning, which combines multiple reinforcement learning agents based on the Deep Q Network structure and has interactive learning capability to learn and classify fault data in the source domain environment. Secondly, transfer learning is used to transfer the feature extraction ability of the source domain intelligent diagnostic agent to the target intelligent diagnostic agent. Finally, the obtained target intelligent diagnostic agent is evaluated on fault data in the target domain and compared with other methods. The results indicate that the proposed method exhibits remarkable advantages and has great potential for practical application in fault diagnosis.","PeriodicalId":169274,"journal":{"name":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault diagnosis of rolling bearing using a transfer ensemble deep reinforcement learning method\",\"authors\":\"Zhenning Li, Hongkai Jiang, Shaowei Liu, Ruixin Wang\",\"doi\":\"10.1109/ICPHM57936.2023.10194014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reliable operation of rolling bearings is related to machinery safety. However, fault signals encountered in practical engineering applications are often characterized by high-dimensionality, complexity, and volume, which restricts the application of deep neural networks in fault diagnosis. Additionally, conventional diagnostic methods are limited by their reliance on manual feature extraction and a significant quantity of labeled samples, which can be time-consuming and resource-intensive. To address these limitations and improve the performance of fault diagnosis in the absence of labeled samples, an intelligent diagnostic agent (TERL-Agent) that combines transfer learning, ensemble learning and reinforcement learning is proposed. Firstly, an intelligent diagnostic agent is constructed by ensemble learning, which combines multiple reinforcement learning agents based on the Deep Q Network structure and has interactive learning capability to learn and classify fault data in the source domain environment. Secondly, transfer learning is used to transfer the feature extraction ability of the source domain intelligent diagnostic agent to the target intelligent diagnostic agent. Finally, the obtained target intelligent diagnostic agent is evaluated on fault data in the target domain and compared with other methods. The results indicate that the proposed method exhibits remarkable advantages and has great potential for practical application in fault diagnosis.\",\"PeriodicalId\":169274,\"journal\":{\"name\":\"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM57936.2023.10194014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM57936.2023.10194014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

滚动轴承的可靠运行关系到机械安全。然而,实际工程应用中遇到的故障信号往往具有高维、复杂和体积大的特点,这限制了深度神经网络在故障诊断中的应用。此外,传统的诊断方法受到人工特征提取和大量标记样本的限制,这可能是耗时和资源密集的。为了解决这些局限性,提高无标记样本情况下的故障诊断性能,提出了一种结合迁移学习、集成学习和强化学习的智能诊断代理(TERL-Agent)。首先,采用集成学习方法构建智能诊断代理,该智能诊断代理基于深度Q网络结构组合多个强化学习代理,具有交互学习能力,对源域环境中的故障数据进行学习和分类;其次,利用迁移学习将源域智能诊断代理的特征提取能力转移到目标智能诊断代理;最后,对目标域的故障数据进行评估,并与其他方法进行比较。结果表明,该方法具有显著的优越性,在实际故障诊断中具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault diagnosis of rolling bearing using a transfer ensemble deep reinforcement learning method
The reliable operation of rolling bearings is related to machinery safety. However, fault signals encountered in practical engineering applications are often characterized by high-dimensionality, complexity, and volume, which restricts the application of deep neural networks in fault diagnosis. Additionally, conventional diagnostic methods are limited by their reliance on manual feature extraction and a significant quantity of labeled samples, which can be time-consuming and resource-intensive. To address these limitations and improve the performance of fault diagnosis in the absence of labeled samples, an intelligent diagnostic agent (TERL-Agent) that combines transfer learning, ensemble learning and reinforcement learning is proposed. Firstly, an intelligent diagnostic agent is constructed by ensemble learning, which combines multiple reinforcement learning agents based on the Deep Q Network structure and has interactive learning capability to learn and classify fault data in the source domain environment. Secondly, transfer learning is used to transfer the feature extraction ability of the source domain intelligent diagnostic agent to the target intelligent diagnostic agent. Finally, the obtained target intelligent diagnostic agent is evaluated on fault data in the target domain and compared with other methods. The results indicate that the proposed method exhibits remarkable advantages and has great potential for practical application in fault diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Operational Risk to Improve Reliability of Unmanned Aerial Vehicles Optimizing Flight Control of Unmanned Aerial Vehicles with Physics-Based Reliability Models A Comprehensive Approach for Gearbox Fault Detection and Diagnosis Using Sequential Neural Networks Bearing compound fault diagnosis based on enhanced variational mode extraction algorithm Fault State Prediction Model of Repaired Equipment Considering Maintenance Effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1