{"title":"生物标志物检测的新护理点策略","authors":"D. Han, Prajokta Ray, Shima Dalirirad, A. Steckl","doi":"10.1109/rapid49481.2020.9195654","DOIUrl":null,"url":null,"abstract":"Stress biomarkers produced by the body are briefly reviewed and our recent research is presented. Quantitative detection using aptamer-LFA demonstrated against cortisol, dopamine, and endotoxin. Microfluidic label-free optical method presented simultaneous detection of multiple biomarkers in bodily fluids, promising real-time detection. Lastly, future biomarker detection is discussed","PeriodicalId":220244,"journal":{"name":"2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel point of care strategies for biomarker detection\",\"authors\":\"D. Han, Prajokta Ray, Shima Dalirirad, A. Steckl\",\"doi\":\"10.1109/rapid49481.2020.9195654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stress biomarkers produced by the body are briefly reviewed and our recent research is presented. Quantitative detection using aptamer-LFA demonstrated against cortisol, dopamine, and endotoxin. Microfluidic label-free optical method presented simultaneous detection of multiple biomarkers in bodily fluids, promising real-time detection. Lastly, future biomarker detection is discussed\",\"PeriodicalId\":220244,\"journal\":{\"name\":\"2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/rapid49481.2020.9195654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/rapid49481.2020.9195654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel point of care strategies for biomarker detection
Stress biomarkers produced by the body are briefly reviewed and our recent research is presented. Quantitative detection using aptamer-LFA demonstrated against cortisol, dopamine, and endotoxin. Microfluidic label-free optical method presented simultaneous detection of multiple biomarkers in bodily fluids, promising real-time detection. Lastly, future biomarker detection is discussed